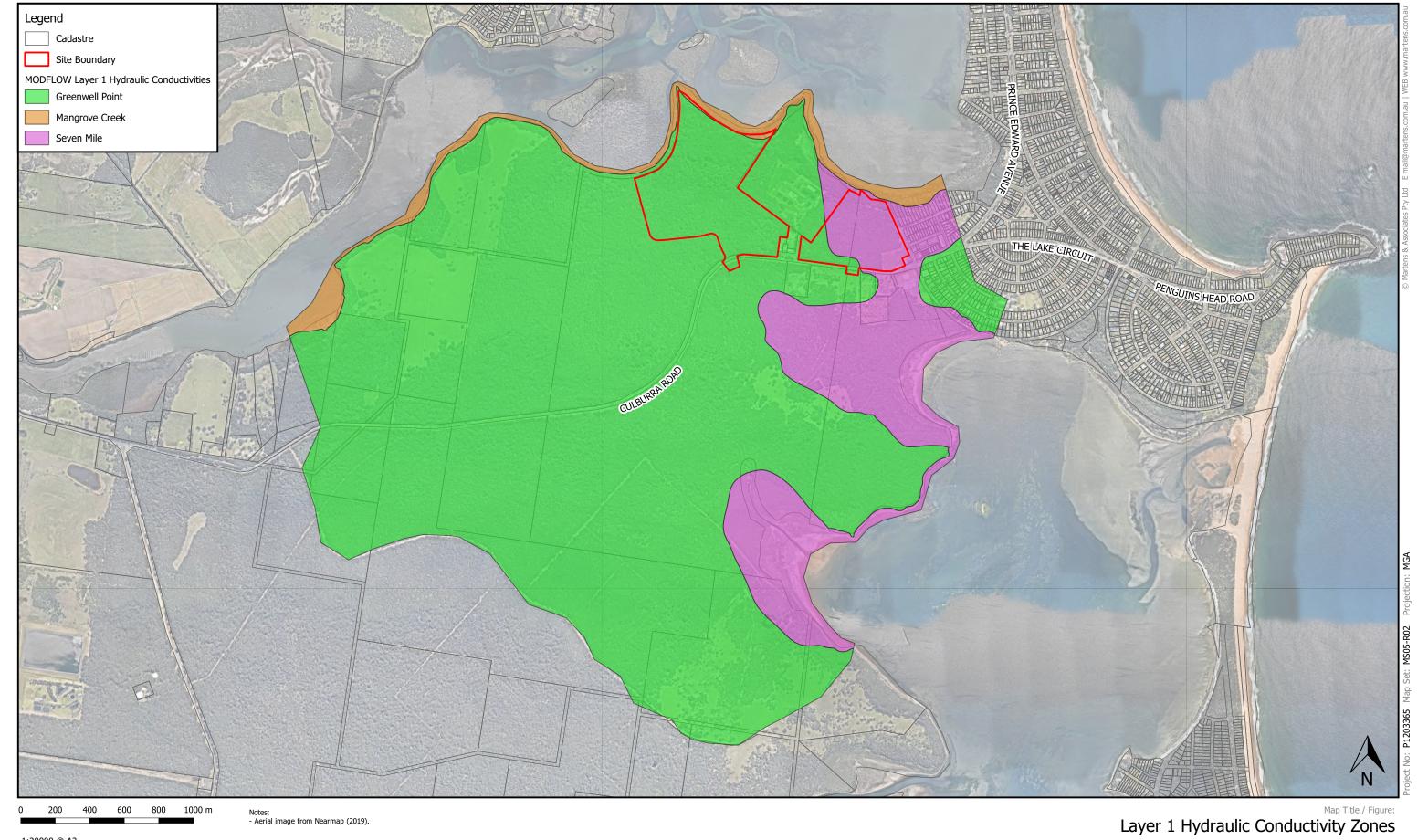

Map 19 West Culburra, NSW Site Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020 Date

Map 20
West Culburra, NSW
Proposed Mixed Use Subdivision
Concept Water Cycle Management Strategy
Sealark Pty Ltd
O4/11/2020
Date

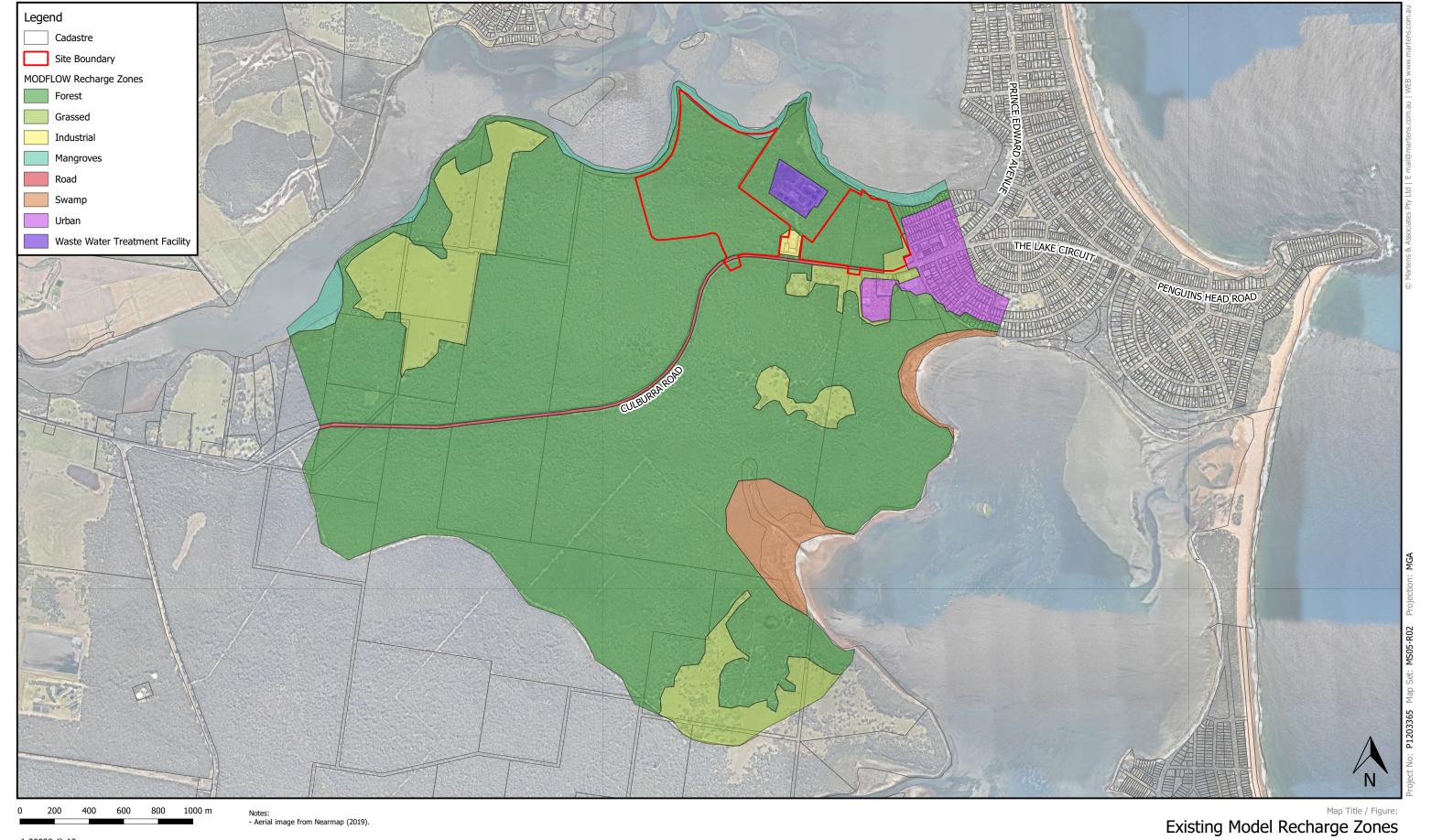
martens
Environment | Water | Geotechnics | Civil | Projects



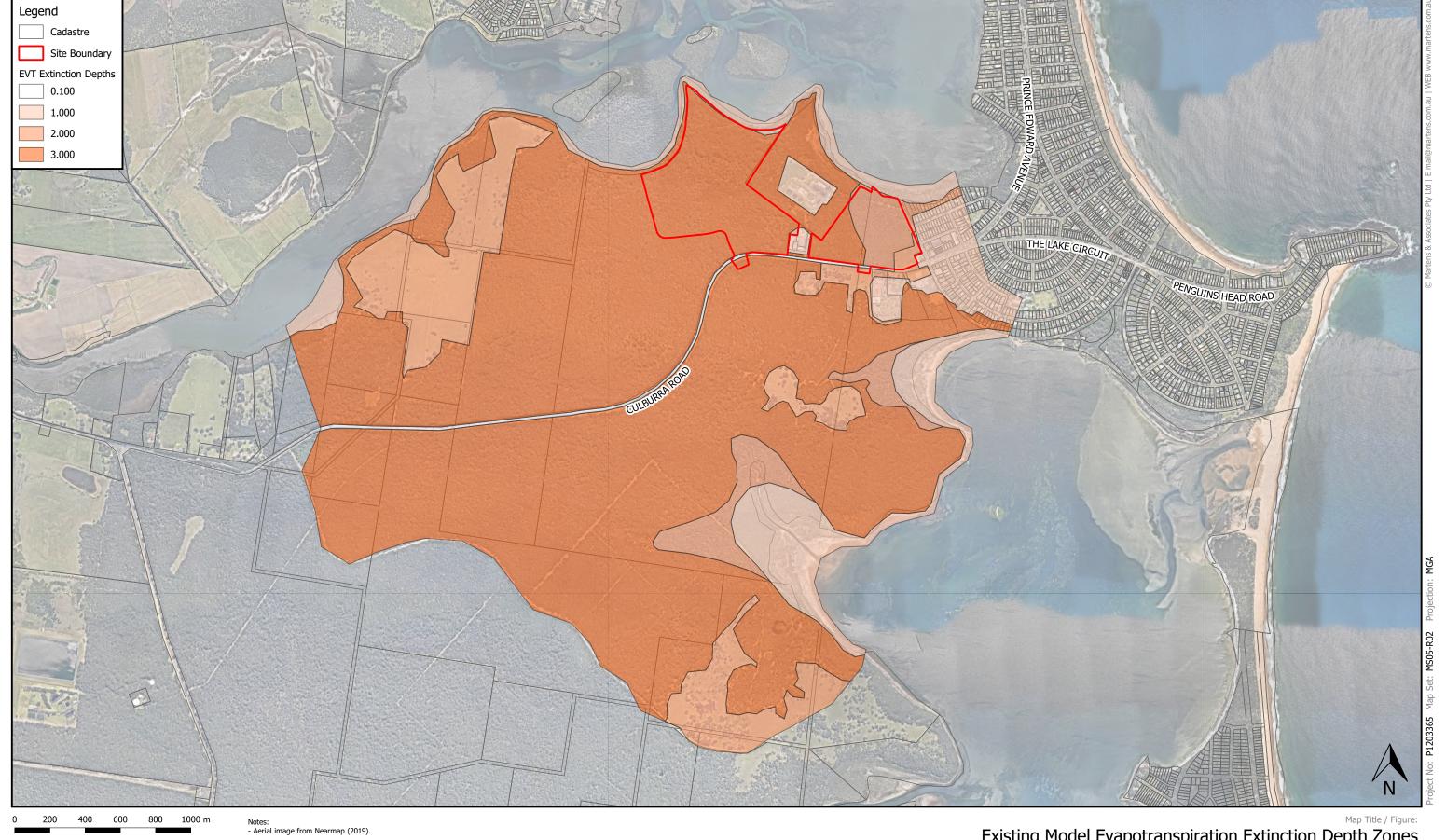
Groundwater Model Extents, Grid Configuration and Boundary Conditions

Map 21 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020

Site


Date

> Map 22 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd Client 04/11/2020


Site

Environment | Water | Geotechnics | Civil | Projects

> Map 23 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020

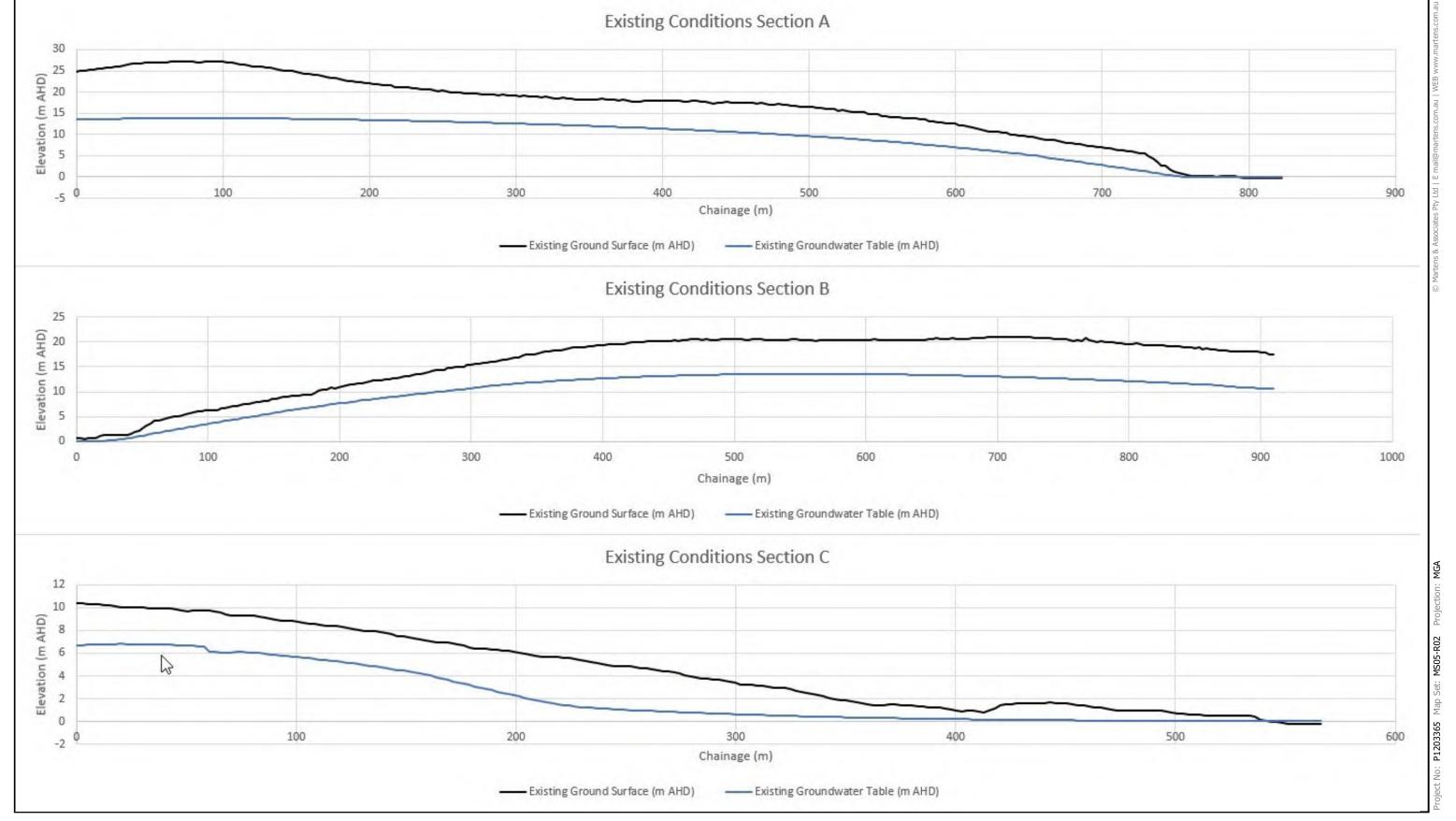
Site

Existing Model Evapotranspiration Extinction Depth Zones

Map 24 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd 04/11/2020

Site

Date



Map 25
West Culburra, NSW
Proposed Mixed Use Subdivision
Concept Water Cycle Management Strategy
Sealark Pty Ltd
O4/11/2020
Date

Map 26
West Culburra, NSW
Proposed Mixed Use Subdivision
Concept Water Cycle Management Strategy
Sealark Pty Ltd
O4/11/2020
Date

martens
Environment | Water | Geotechnics | Civil | Projects

lan Title / Figure

Мар

Existing Conditions Groundwater Heads Sections

Map 27
West Culburra, NSW
Proposed Mixed Use Subdivision
Concept Water Cycle Management Strategy
Sealark Pty Ltd

04/11/2020

martens
Environment | Water | Geotechnics | Civil | Projects

Post-Development Modified Recharge Areas

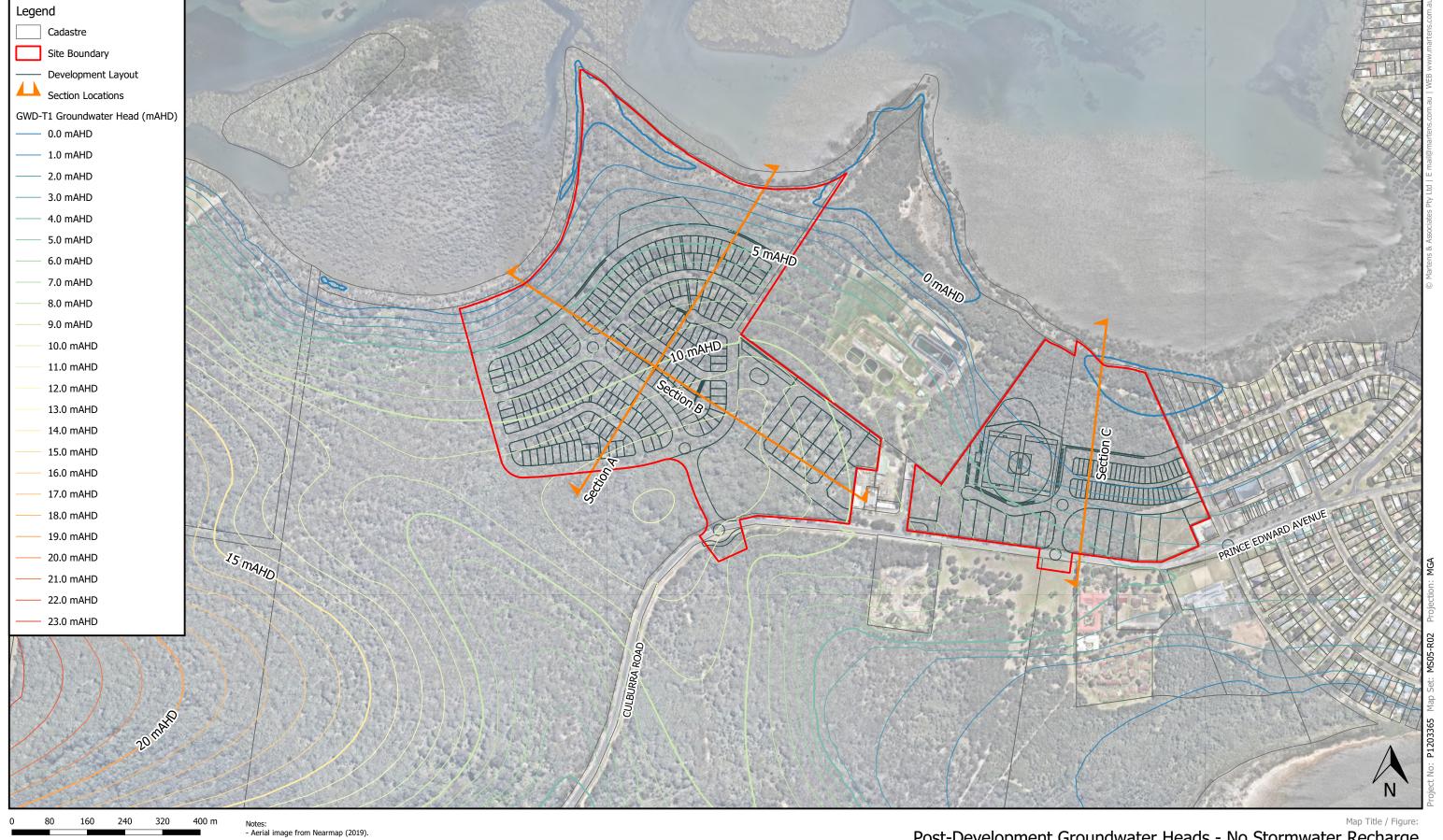
Map 28 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020

Мар

Site

Date

Environment | Water | Geotechnics | Civil | Projects


> Map 29 Мар West Culburra, NSW Site Proposed Mixed Use Subdivision Project

Concept Water Cycle Management Strategy

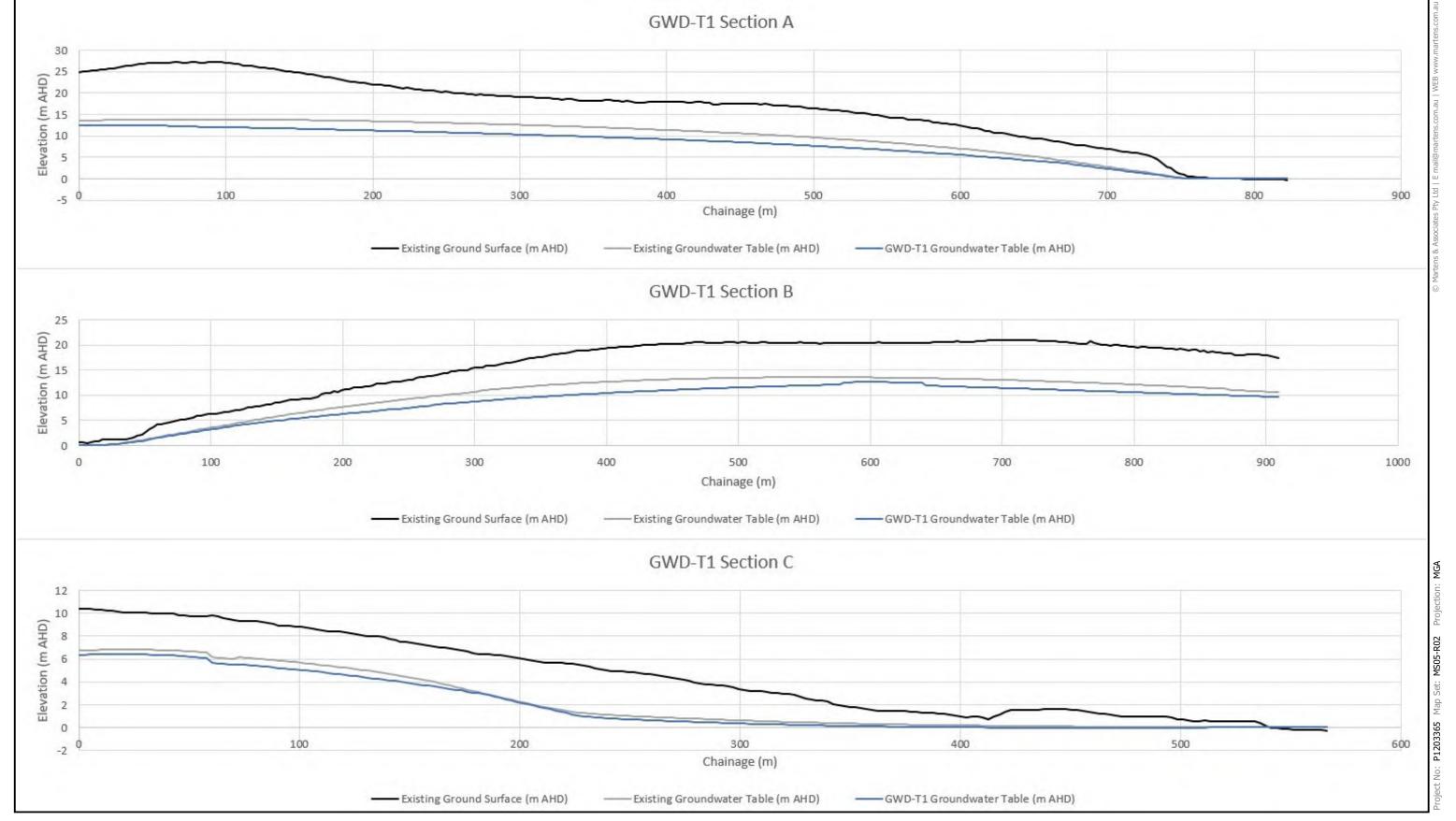
Sealark Pty Ltd 04/11/2020 Client

Date

Environment | Water | Geotechnics | Civil | Projects

Post-Development Groundwater Heads - No Stormwater Recharge

Map 30 West Culburra, NSW Site Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020 Date



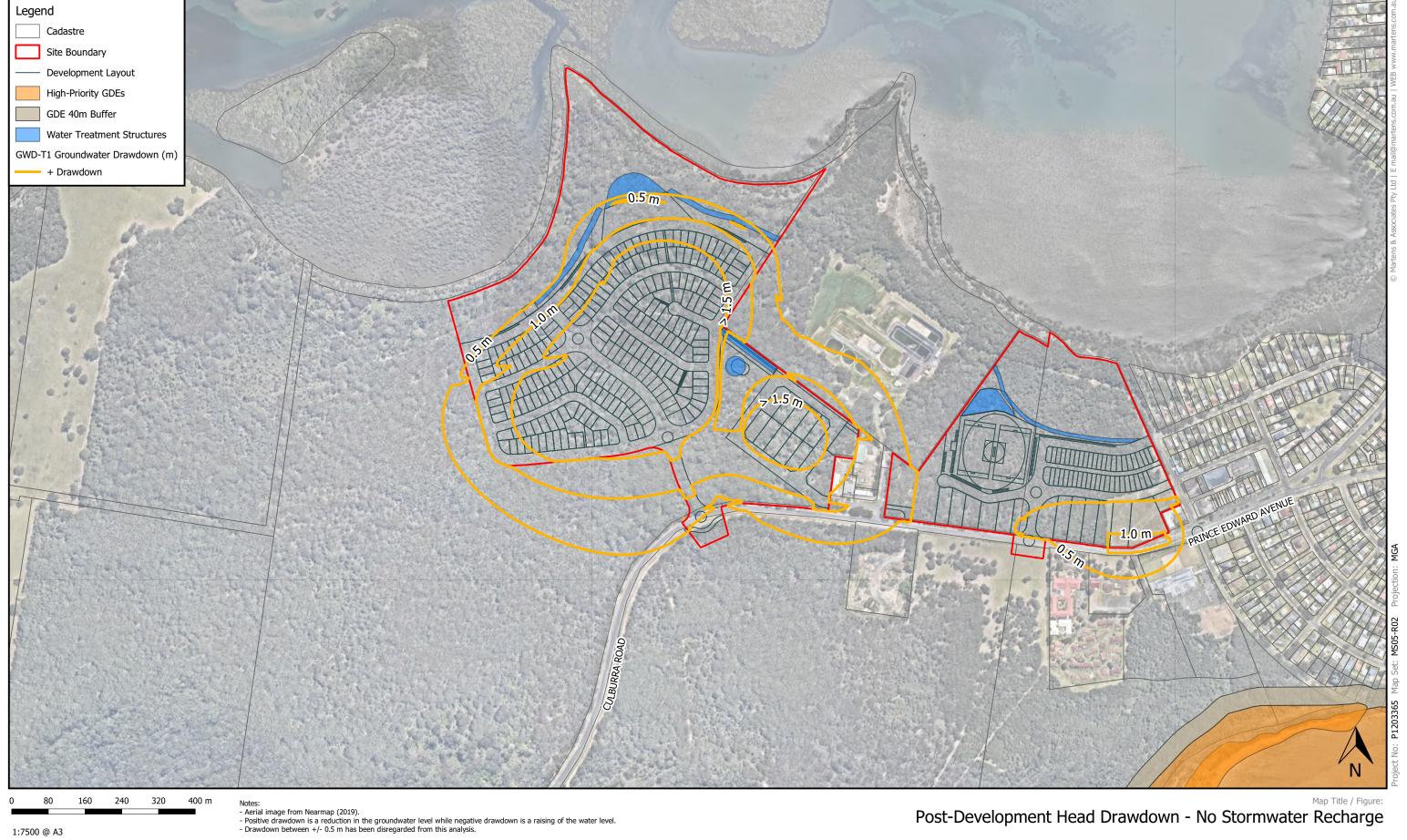
Post-Development Depth to Groundwater - No Stormwater Recharge

Map 31 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020 Date

Site

Мар

Site

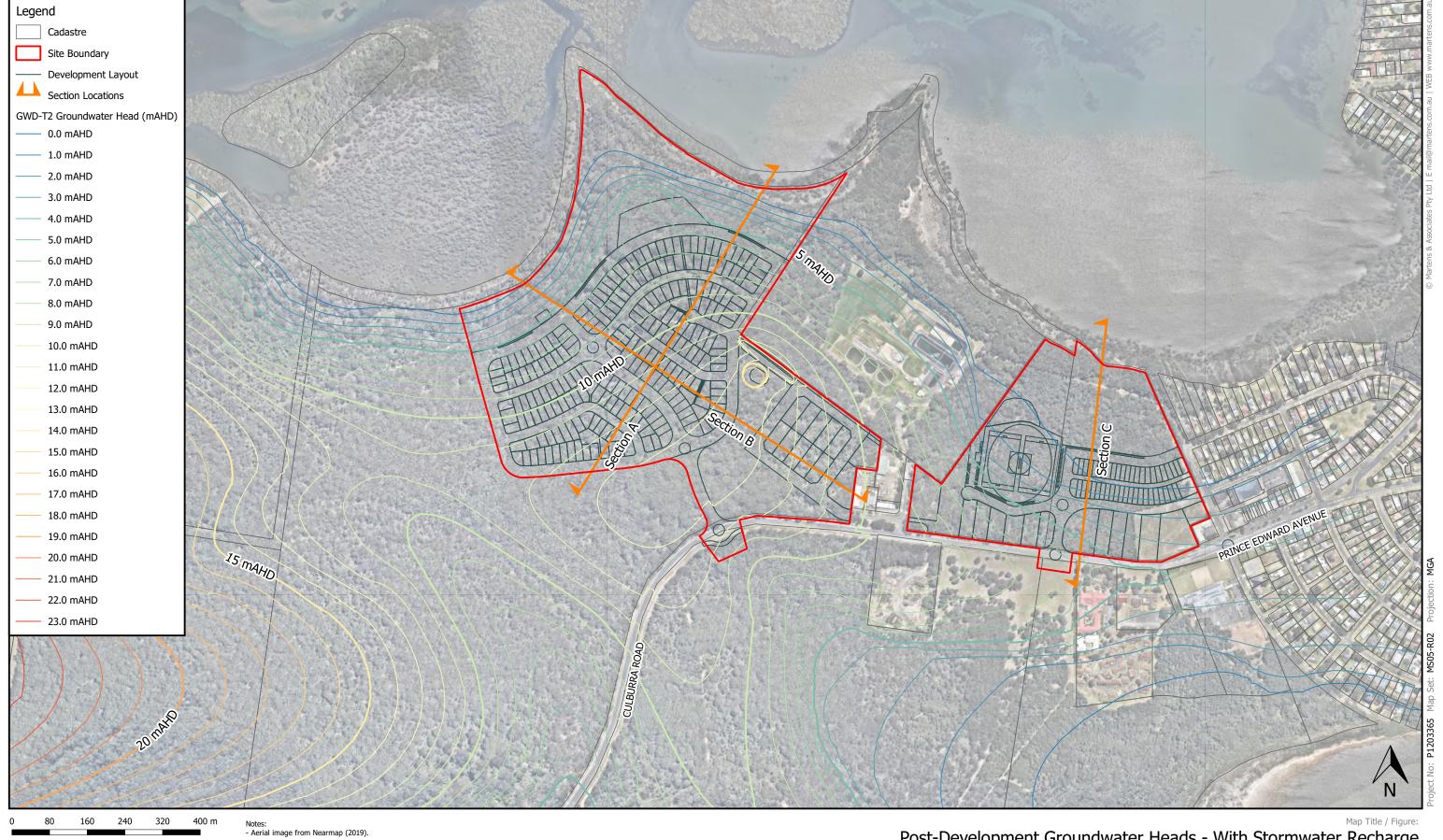

Date

Post-Development Groundwater Heads Sections - No Stormwater Recharge

Map 32 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd

04/11/2020

Environment | Water | Geotechnics | Civil | Projects


1:7500 @ A3

Viewport D

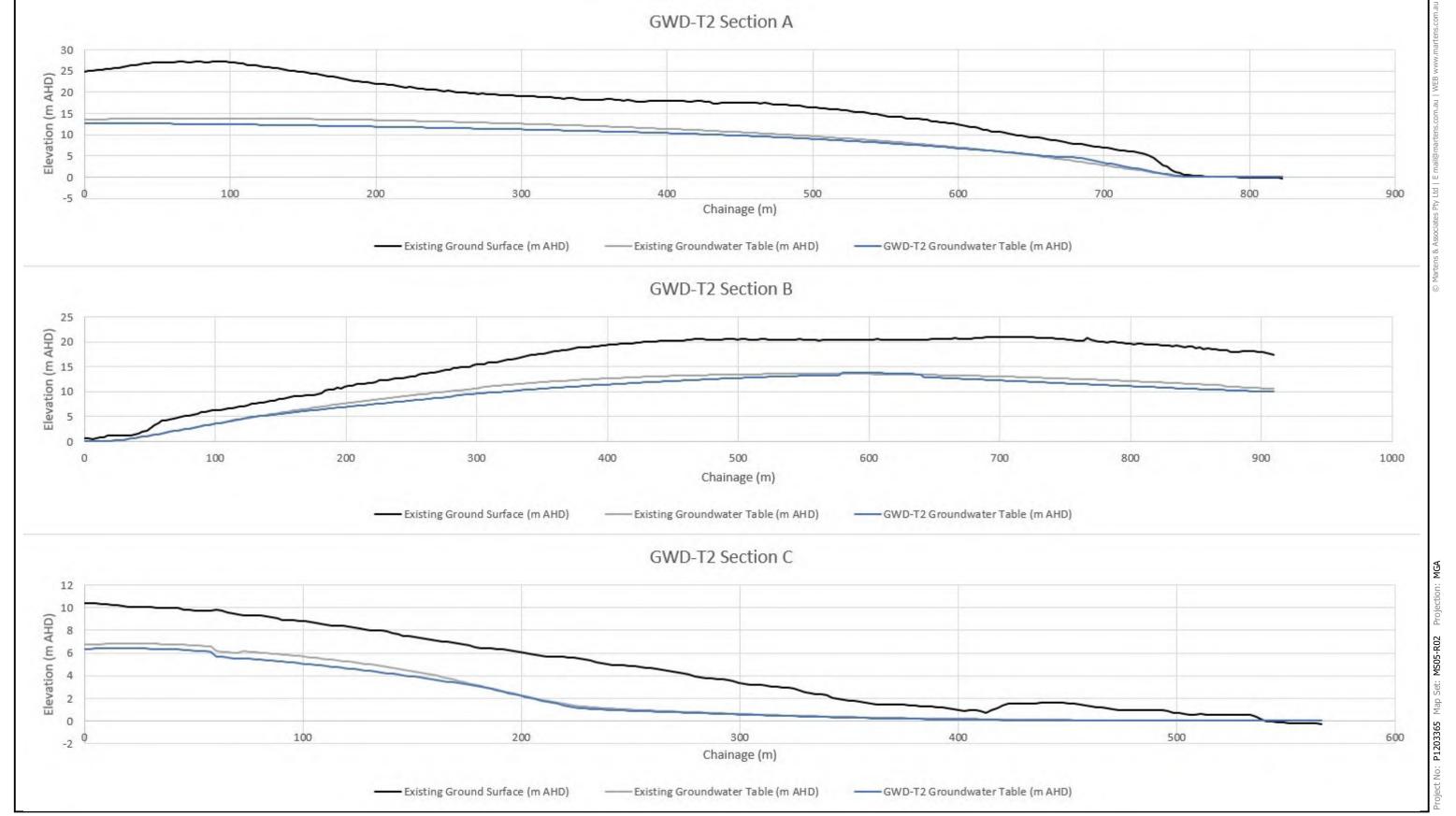
Post-Development Head Drawdown - No Stormwater Recharge

Map 33 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd 04/11/2020

Post-Development Groundwater Heads - With Stormwater Recharge

Map 34 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020 Date

Site



Post-Development Depth to Groundwater - With Stormwater Recharge

Map 35 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020

Site

Мар

Site

Date

Post-Development Groundwater Heads Sections - With Stormwater Recharge

Map 36 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd 04/11/2020

1:7500 @ A3

Viewport D

Post-Development Head Drawdown - With Stormwater Recharge

Map 37 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sub-Project Sealark Pty Ltd Client 04/11/2020

1:5000 @ A3

Viewport E

Post-Development Total Nitrogen Plumes - With Stormwater Recharge

Map 38 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd 04/11/2020

1:5000 @ A3

Viewport E

Post-Development Total Phosphorous Plumes - With Stormwater Recharge

Map 39 West Culburra, NSW Proposed Mixed Use Subdivision Concept Water Cycle Management Strategy Sealark Pty Ltd 04/11/2020

Post-Development Faecal Coliform Plumes - With Stormwater Recharge

1:5000 @ A3 Viewport E

Map 40 West Culburra, NSW Proposed Mixed Use Subdivision Project Concept Water Cycle Management Strategy Sealark Pty Ltd 04/11/2020

Map 41
West Culburra, NSW
Proposed Mixed Use Subdivision
Concept Water Cycle Management Strategy
Sealark Pty Ltd
O4/11/2020
Date

martens
Environment | Water | Geotechnics | Civil | Projects

13 Annexure C: Figures

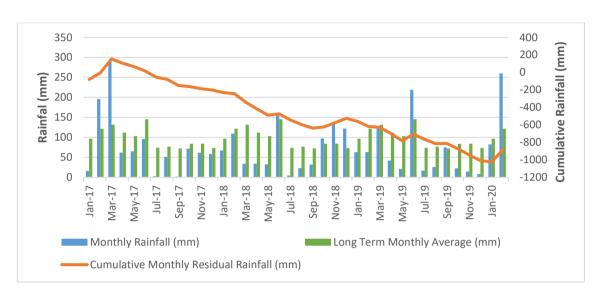


Figure 1: Average and cumulative residual monthly rainfall.

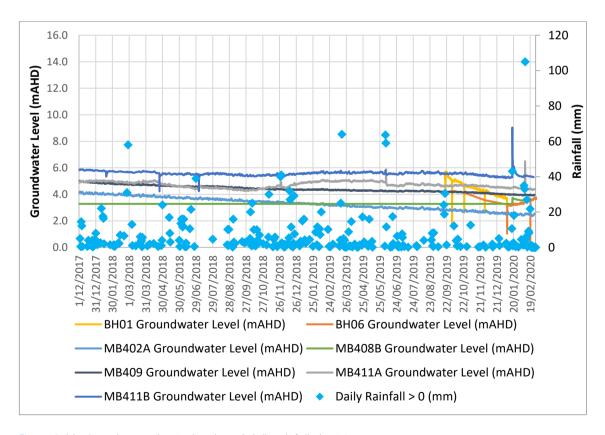


Figure 2: Monitored groundwater levels and daily rainfall chart 1.

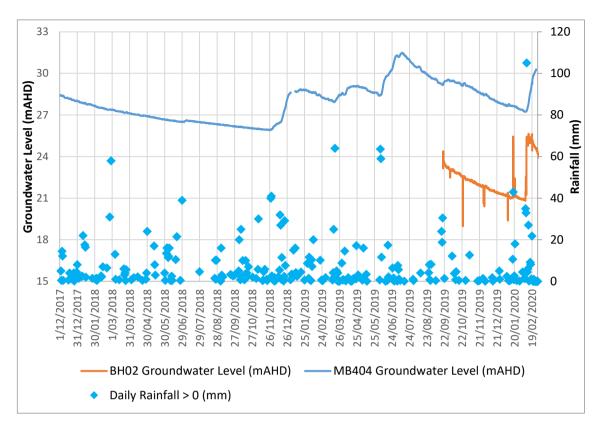


Figure 3: Monitored groundwater levels and daily rainfall chart 2.

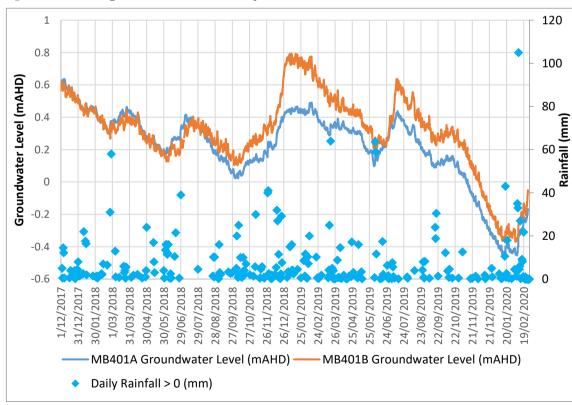


Figure 4: Monitored groundwater levels and daily rainfall chart 3.

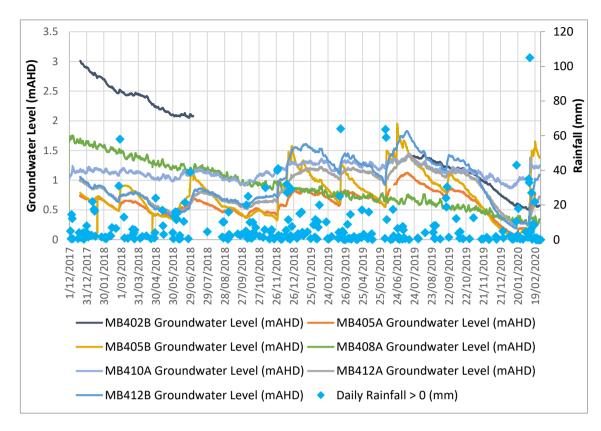


Figure 5: Monitored groundwater levels and daily rainfall chart 4.

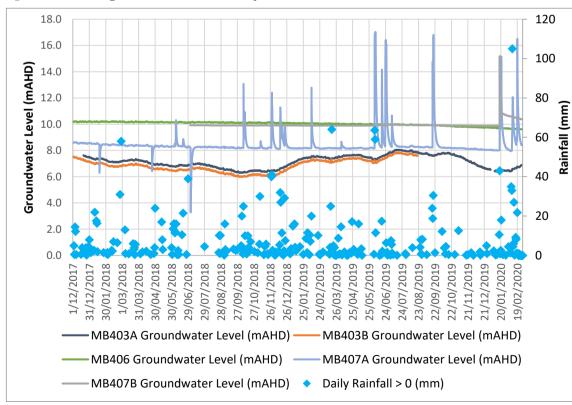


Figure 6: Monitored groundwater levels and daily rainfall chart 5.

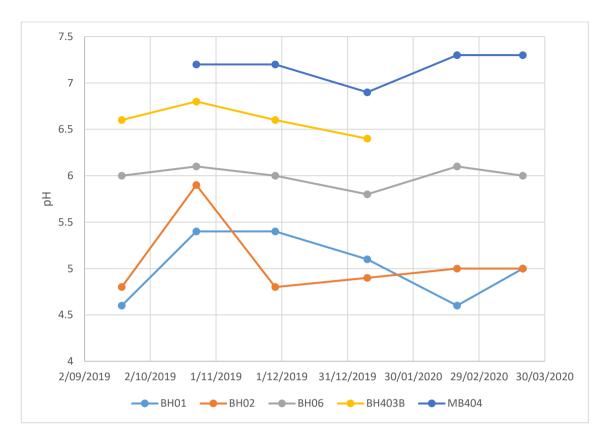


Figure 7: Observed pH readings.

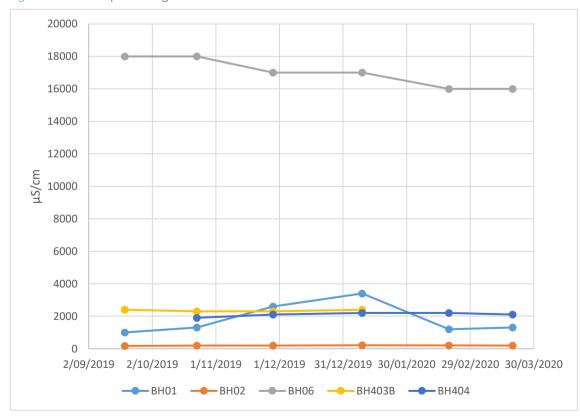


Figure 8: Observed electrical conductivity readings.

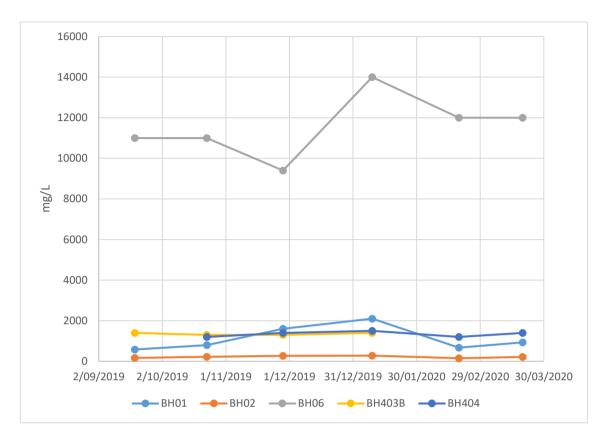


Figure 9: Observed total dissolved solids readings.

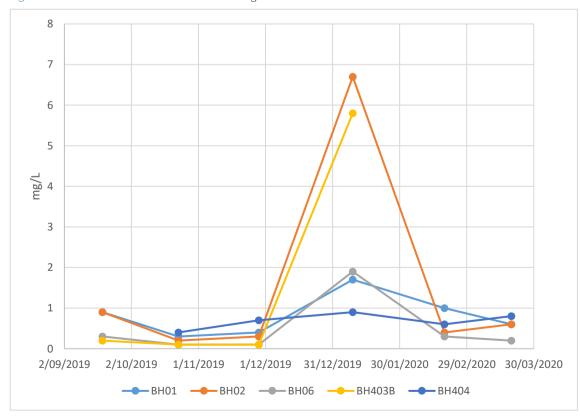


Figure 10: Observed total nitrogen readings.

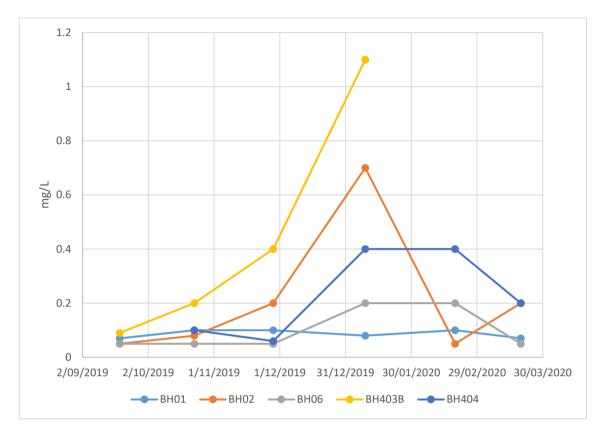


Figure 11: Observed total phosphorous readings.

Figure 12: Observed faecal coliforms readings.

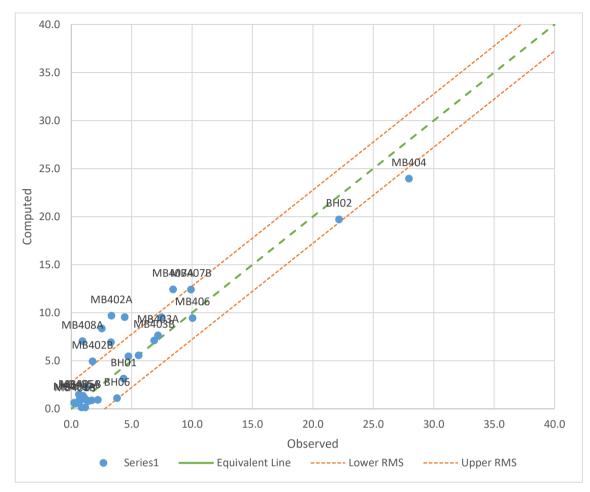


Figure 13: Existing conditions MODFLOW model calibration plot.

Figure 14: Groundwater samples compared to MUSIC modelled concentrations.

14 Annexure D: Soil Profile Logs

CLIENT		A	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08	3/20	19		KEF	BH401	
PR	DJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED					Sheet	1 OF 1	
SIT	E		Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Gras	s				NO. P1203365	
EQL	JIPME	NT			Push Tube				EASTING	150.750948	RL SURFACE	m				DATUM	AHD	
EXCAVATION DIMENSIONS 1.20 m depth									NORTHING	-34.931613	ASPECT	North	1			SLOPE	<5%	
		Dri	lling		Sampling				•	Fi	ield Material D							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	H GI F	CONDITION	CONSISTENCY DENSITY		STRUCTURE AND ADDITIONAL OBSERVATIONS		
	L		_	0.10	3365/BH401/0.0-0.1/S/1 D 0.00 m 3365/BH401/0.0-0.2/S/1			SL	grained sand: trace	DAM; low plasticity; dark b	prown; medium			F	TOPSOIL	L		
			-	0.20	D 0.00 m		<i>Y/</i>	LC	No roots; slightly pe	dal um plasticity; brown; aped					RESIDU	AL SOIL		
PT	М	Not Encountered	- 0.5 — - -		3365/BH401/0.5-0.8/S/1 D 0.50 m		_		Elom OB 11, mode	m pictory, stom, apoc	u.	(<	M < <pl< td=""><td>) St</td><td></td><td></td><td></td><td>-</td></pl<>) St				-
			1.0 —															_
			-	1.10 1.20				CL-	Sandy CLAY; low to	medium plasticity; yellow					1.10: Pos	ssible extre	mely weathered rock.	-
				7.20				CI	Hole Terminated at			$-\uparrow$						_
			-	-					(Target depth reach	ed)								
			1.5 —															_
			-															
			-															
			-															
			2.0 —															-
			-															-
			-	-														
			2.5 —															_
			-															-
			-															
			-															
			3.0 —															-
			_															
			-															
			3.5—															
			-															
			-															
			-															
			4.0 —															-
			-															
			-															
			-															
			4.5															-
			-															
			-															
			-															_
					EXCAVATION LOG TO	BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABBI	REVIATION	ONS		_
		_							MADTENO 0	A CCOCIATE COTVITO	, 1			_	_	_	_	

martens
(C) Copyright Martens & Associates Pty, Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT		A	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		KEF	BH402	
PRO	DJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E		Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Grass		- 1		NO. P1203365	
EQL	JIPME	NT			Push Tube				EASTING	150.750861	RL SURFACE	m			AHD		
EXC	AVAT	ION [DIMENSI	ONS	1.10 m depth				NORTHING	-34.932376	ASPECT	South			SLOPE	<5%	
		Dril	lling		Sampling				•	Fi	ield Material D	escriptio	on				
МЕТНОД	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		STRUCTURE AND ADDITIONAL OBSERVATIONS		
			-	0.10	3365/BH402/0.0-0.1/S/1 D 0.00 m 3365/BH402/0.0-0.2/S/1 D 0.00 m 3365/BH402/0.0-0.3/S/1 D 0.00 m	1		SL	TOPSOIL: Sandy LO grained sand; weak No roots; trace coal	TOPSOIL: Sandy LOAM; low plasticity; dark brown; medium grained sand; weakly structured; pedal; trace roots (grass). No roots; trace coal.				TOPSOIL			
PT	L	Encountered	0.5—				МС	MEDIUM CLAY; me red; apedal; trace si	dium plasticity; dark grey, dark brown and ibrounded ironstone gravels.		М		RESIDUAL SOIL				
<u>.</u>		Not E	- -		D 0.50 m							(< <pl< td=""><td>St</td><td></td><td></td><td></td></pl<>	St				
			1.0—	0.95 1.10				CL- CI	grained sand; with s	medium plasticity; yellow	and grey; fine		Н	0.95: Po	ssible extre	mely weathered rock.	
			_						sandstone gravels; Hole Terminated at	·		$-/\!$		1.10: Re	fusal on fin	e grained sandstone.	
			-														
			1.5 — - -													-	
			-														
			2.0 —													-	
			- 2.5														
			2.5														
			3.0—													_	
			-														
			3.5—													-	
			- -														
			4.0 —													-	
			- - -														
			4.5—													-	
			- - -														
			-														
					EXCAVATION LOG TO	BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIATI	ONS		
									MADTENCO	ASSOCIATES BTV I TD			_			_	

martens
(C) Copyright Martens & Associates Pty. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT		Α	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		KEF	BH403	
PRO	DJEC	т	Soils Inv	estigatio	on				LOGGED		CHECKED					4.05.4	
SITE Culburra Road, West Culburra G									GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P1203365	
EQUIPMENT Push Tube E							EASTING	150.749279	RL SURFACE	m			DATUM	AHD	_		
EXCAVATION DIMENSIONS Ø50 mm x 0.90 m depth N									NORTHING	-34.931558	ASPECT	North		5	SLOPE	<5%	_
		Dril	lling		Sampling				<u>'</u>	Fi	ield Material D	escriptio	n		'		_
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL RVATIONS			
			_		3365/BH403/0.0-0.1/S/1 D 0.00 m 3365/BH403/0.0-0.2/S/1			SL	TOPSOIL: Sandy LO	DAM; low plasticity; dark bedal	prown and dark gi	rey;		TOPSOIL			
		untered	-	0.15	3365/BH403/0.0-0.2/S/1 D 0.00 m 3365/BH403/0.0-0.3/S/1 D 0.00 m		× ×			pedium plasticity; yellow-b	rown; apedal.	M (< <py< td=""><td>) St — —</td><td>RESIDUA</td><td>IL SOIL</td><td></td><td></td></py<>) St — —	RESIDUA	IL SOIL		
PT	М	Not Encountered	0.5—		3365/BH403/0.4-0.7/S/1 D 0.40 m		x x					M (<pl)< td=""><td>_</td><td></td><td></td><td></td><td>-</td></pl)<>	_				-
			-	0.05			x						F				
				0.85 0.90			×			ed ironstone gravels.		_		0.90: Refi	usal on roo	k possible ironstone	_
			1.0 —						Hole Terminated at	0.90 m				band, silts	stone or fin	e grained sandstone.	_
			_														
			-														
			1.5 —														_
			-														
			-														
			-														
			2.0 —														_
			-														
			-														
			-														
			2.5 —														-
			_														
			-														
			3.0 —														
			-														
			-														
			_														
			3.5 —														_
			-														
			_														
			-														-
			4.0 —														-
			_														
			-														
			4.5 —														
			-7.5 -														
			-														
			- -														
					EXCAVATION LOG TO) RI	F REA	D IN C			REPORT NOT	ES AND	ΔRRI	RE\/IATI	ONS		_
					_,,o,,v,(iioiv Log IO	اں .	_A	- II4 C	CINOCOTION WI		TEL OILT NOT	TO VIND	וטט.	VI7(11(2140		-

martens
(C) Copyright Martens & Associates Pty. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT		F	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/2019				KEF	BH404	
PROJECT Soils Investigation					on				LOGGED		CHECKED					Sheet	1 OF 1	
SITE Culburra Road, West Culburra									GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shru	ıbs				NO. P1203365	
EQUIPMENT Push Tube E									EASTING		RL SURFACE	m				DATUM	AHD	
EXC	AVAT	ION I	DIMENSI	ONS .	Ø50 mm x 1.40 m depth				NORTHING		ASPECT	Sout	hwes	st		SLOPE	<5%	
		Dri	lling		Sampling					Fi	ield Material D	_	•	_				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC		MOISTURE	CONSISTENCY DENSITY		AD OBSE	CTURE AND DITIONAL ERVATIONS		
			-	0.30	3365/BH404/0.0-0.1/S/1 D 0.00 m 3365/BH404/0.0-0.2/S/1 D 0.00 m 3365/BH404/0.0-0.2/S/2			SL	FOPSOIL: Sandy LC îne grained sand; tr	DAM; low plasticity; dark bace roots; pedal.	orown and dark g	rey;		F	TOPSOI	L		
_		Not Encountered	0.5 —	0.30	D 0.00 m 3365/BH404/0.0-0.2/S/3 D 0.00 m 3365/BH404/0.0-0.2/S/DUP D 0.00 m 3365/BH404/0.5-0.7/S/1 D 0.50 m			MC	MEDIUM CLAY; medium plasticity; grey-brown with trace orange and dark brown; apedal. HEAVY CLAY: medium to high plasticity; grey, pale grey and						RESIDU	AL SOIL		
PT	М	Not E	-	0.90	3365/BH404/0.9-1.1/S/1 D 0.90 m) VSt									_	
			-	1.20	3365/BH404/1.2-1.4/S/1 D 1.20 m			sc	vellow; apedal.	asticity; yellow and grey; v	 with fine to mediu							
	_			1.40	·				grained sand; with s									
			1.5 —						Target depth reach									_
			-															
			2.0															-
			2.5 —															-
			3.0															-
			3.5—															-
			4.0 —															-
			4.5															-
			-															
					EXCAVATION LOG TO	BI	E REAI	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABB	REVIATI	ONS		
		-							MADTENCO	ASSOCIATES DTV I TD	、 I			_	_	_	_	

martens
(C) Copyright Martens & Associates Pty, Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	4	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/2	019		REF	BH405	
PR	OJEC	ET S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E	C	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Shrubs				NO. P1203365	
EQI	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION [DIMENSI	ONS .	Ø50 mm x 1.20 m depth				NORTHING		ASPECT	East			SLOPE	<5%	
		Dril	lling		Sampling					Fi	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
		Encountered	- - - 0.5—	0.20	3365/BH404/0.0-0.1/S/1 D 0.00 m 3365/BH405/0.0-0.1/S/1 D 0.00 m 3365/BH405/0.0-0.1/S/1 D 0.00 m 3365/BH405/0.0-0.2/S/1 D 0.20 m 3365/BH404/0.4-0.5/S/1			SL N	with fine to medium Pale grey and grey; MEDIUM CLAY; low	OAM; low plasticity; dark by grained sand; trace roots no roots. to medium plasticity; redubrounded ironstone graves.	; pedal.			TOPSO	IL JAE SOIE		
PT	M-H	Not Enco	- - - 1.0 —	0.70	D 0.40 m 3365/BH404/1.0-1.2/S/1 D 1.00 m			-	Grey, red and yellow Trace subrounded to No ironstone gravel	o subangular ironstone gr	ravels.	M (< <f< td=""><td>PL)</td><td></td><td></td><td></td><td></td></f<>	PL)				
				1.20					Hole Terminated at (Target depth reach								_
			-	-					(raiget depair reasi)	cu)							
			1.5 —														
			-														
			-														
			2.0 —														-
			-														
			2.5														-
			_														
			-														
			3.0 —														-
			-														
			-	-													-
			3.5 —														
			-														
			4.0														
			4.0 -														
			-														
			_														
			4.5 —														-
			_														
				E	EXCAVATION LOG TO	BI	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI) ABB	REVIAT	IONS		_
		-							MARTENS &	ASSOCIATES PTY LTD	,		_		.		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Α	llen Pri	ce & Sca	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/2	019		REF	BH406	
PR	OJEC	тѕ	oils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E	С	ulburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQL	JIPME	NT		F	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	IMENSI	ONS s	250 mm x 0.80 m depth				NORTHING		ASPECT	South			SLOPE	<5%	
		Dril	ling		Sampling					Fi	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI OBSE	CTURE AND DITIONAL ERVATIONS	
		tered	-		3365/BH406/0.0-0.2/S/1 D 0.00 m 3365/BH406/0.0-0.2/S/2 D 0.00 m			SL I	TOPSOIL: Sandy LO medium grained sar	DAM; low plasticity; dark b nd; trace roots; pedal.	prown; with fine to			TOPSO	L		-
Ы	М	Not Encountered	-	0.30	3365/BH406/0.0-0.2/S/3 D 0.00 m 3365/BH406/0.2-0.3/S/1 D 0.20 m			CL- CI	Sandy CLAY; low to grained sand; apeda	medium plasticity; yellow		— — M (< <f< td=""><td></td><td>RESIDU</td><td>JĀĒ SŌIĒ</td><td></td><td></td></f<>		RESIDU	JĀĒ SŌIĒ		
		8 	0.5 —		3365/BH406/0.5-0.7/S/1 D 0.50 m												-
				0.80					Hole Terminated at	0.80 m							
			1.0 —						(Target depth reach								-
			-														
			1.5 —														-
			-														
			-														-
			2.0 —														-
			-														
			2.5 —														-
			-														
			3.0														-
			-														
			3.5 —														-
			-														
			-														
			4.0 —														-
			-														
			-														
			4.5 —														_
			-														
			-														-
			-														
					TVOAN/ATION LOGICA				ON ILIOTION W	TH ACCOMPANIAN	DEDODING	TO 437	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DE\#4=	IONO		
		05.2	De 170		EXCAVATION LOG TO	B	E KEA	או ח (ONJUCTION WI	I H ACCOMPANYING	KEPORT NOT	ES ANI	ABB	KEVIAT	IONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Α	llen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		REF	BH407	
PR	OJEC	тѕ	oils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF ⁻	1
SIT	E	С	ulburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQL	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	IMENSI	ONS ,	Ø50 mm x 0.90 m depth				NORTHING		ASPECT	East			SLOPE	<5%	
		Dril	ling		Sampling					Fi	ield Material D	·	_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
	м		_		3365/BH407/0.0-0.1/S/1 D 0.00 m			SL	TOPSOIL: Sandy LO	DAM; low plasticity; dark band; trace roots; pedal.	prown; with fine to			TOPSO	IL		-
Ы	н	Not Encountered	0.5	0.20	3365/BH407/0.1-0.2/S/1 D 0.10 m 3365/BH407/0.1-0.2/S/2 D 0.10 m 3365/BH407/0.1-0.2/S/3 D 0.10 m 3365/BH407/0.3-0.5/S/1 D 0.30 m			CL- CI		medium plasticity; yellow		M (< <pl< td=""><td>.)</td><td>RESIDU</td><td>JAL SOIL</td><td></td><td></td></pl<>	.)	RESIDU	JAL SOIL		
			-		3365/BH407/0.8-0.9/S/1				Pale grey, yellow an	d red.							
			1.0 —	0.90	D 0.80 m				Hole Terminated at (Target depth reach	0.90 m ed)							
			-														
			-														
			1.5 —														-
			-														
			2.0 —														-
			=														
			2.5—														
			-														-
			-														
			3.0 —														-
			-														-
			3.5—														-
			-														
			4.0 —														-
			u —- -														-
			-														
			-														
			4.5 —														_
			-														
			-														=
			-														
				<u> </u>	 EXCAVATION LOG TO	BI	 E RFA	D IN (CONJUCTION WIT	TH ACCOMPANYING	REPORT NOT	ES AND	 ABRI	 REVIAT	IONS		
			De m		2			• •									

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIEN	ΙT	All	len Pric	e & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		KEF	BH408	
PROJ	ECT	Sc	oils Inve	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SITE		Сι	ulburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Shrubs				NO. P1203365	
EQUIP	MEN.	Т			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXCA\	'ATIC	N DI	IMENSI	ONS .	Ø50 mm x 0.70 m depth				NORTHING		ASPECT	Northeas	st		SLOPE	<5%	
		Drilli	ing		Sampling				•	Fi	eld Material D	escriptio	n				
METHOD PENETRATION	RESISTANCE	WAIEK	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
	л -	Not Encountered	0.5 —	0.20	3365/BH408/0.0-0.1/S/1 D 0.00 m 3365/BH408/0.1-0.2/S/1 D 0.10 m 3365/BH408/0.1-0.2/S/2 D 0.10 m 3365/BH408/0.1-0.2/S/3 D 0.10 m 3365/BH408/0.3-0.5/S/1 D 0.30 m	-		SL T	ith fine to medium	DAM; low plasticity; dark b grained sand; trace roots to medium plasticity; yelk	; pedal.	rey;		TOPSOIL RESIDU/			
			-	0.70	3365/BH407/0.6-0.7/S/1												=
			1.5 —	0.70	D 0.60 m				ole Terminated at larget depth reach								
					XCAVATION LOG TO	PL	DE ^ F) IN CC	NULLICATION VAC		DEDORT NOT	EC VVID	V D D	DE\/\^T'	ONE		
				L L	LACAVATION LUG TO	ВE	. KEAL	אווי ע	DINJUCTION WI	ITT ACCOMPANYING	NEFURI NUI	EO AND	ADBI	KEVIA I I	ONO		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIE	ENT	Α	Allen Prid	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		KEF	BH409	
PRO	JEC	τS	Soils Inv	estigatio	on				LOGGED		CHECKED				Ob	4.05.4	
SITE	•	С	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs			Sheet PROJECT	1 OF 1 NO. P1203365	
EQU	IPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS .	Ø50 mm x 0.70 m depth				NORTHING		ASPECT	Northeas	st	;	SLOPE	<5%	
		Dril	lling		Sampling				1	Fi	ield Material D	escription	n	!_			_
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC			CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
PT	M M-H	Not Encountered	- 0.5 —	0.20	3365/BH409/0.0-0.1/S/1 D 0.00 m 3365/BH409/0.1-0.2/S/1 D 0.10 m 3365/BH409/0.1-0.2/S/2 D 0.10 m 3365/BH409/0.1-0.2/S/3 D 0.10 m 3365/BH409/0.5-0.7/S/1 D 0.50 m			SL T	ith fine to medium	DAM; low plasticity; dark t grained sand; trace roots to medium plasticity; yell	; pedal.	rey;		TOPSOIL RESIDUA			
			-	0.70	D 0.30 III												-
			1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —						tole Terminated at Target depth reach	0.70 m ed)							
																	_
				E	EXCAVATION LOG TO	BE	REA	D IN CO	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIATIO	ONS		_

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLII	ENT	Α	Allen Prid	ce & Sca	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		REF	BH410	
PRO	DJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SITI	Ξ	C	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Shrubs				NO. P1203365	
EQL	IIPME	NT		F	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS ,	Ø50 mm x 1.00 m depth				NORTHING		ASPECT	Northwe			SLOPE	<5%	_
			lling		Sampling					Fi	eld Material D		_				_
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
			-	0.20	3365/BH410/0.0-0.1/S/1 D 0.00 m 3365/BH410/0.1-0.2/S/1 D 0.10 m			SL	TOPSOIL: Sandy LO medium grained san	DAM; low plasticity; dark bad; trace roots; pedal.	prown; with fine to			TOPSO	IL		_
PT	М	Not Encountered	0.5 —	0.40	3365/BH410/0.1-0.2/S/2 D 0.10 m 3365/BH410/0.1-0.2/S/3 D 0.10 m 3365/BH410/0.2-0.4-0.5 D 0.20 m			МС	MEDIUM CLAY; me	dium plasticity; yellow-bro	wn; apedal.	M (<pl to M (<pl< td=""><td>il .</td><td>RESIDU</td><td>JAL SOIL</td><td></td><td>-</td></pl<></pl 	il .	RESIDU	JAL SOIL		-
			-	1.00	3365/BH410/0.8-1.0/S/1 D 0.80 m												-
			—1.0— –	1.00					Hole Terminated at (Target depth reach								_
			-						(raiget apparreasi	54,							
			-														
			1.5 —														_
			-														
			-														
			2.0 —														_
			-														
			-														-
			2.5 —														_
			-														
			_														
			3.0 —														_
			-														
			-														
			3.5 —														-
			-														
			-														-
			4.0 —														-
			-														
			-														
			4.5 —														-
			-														
			-														
				E	EXCAVATION LOG TO	BI	EREA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	TONS		_

martens

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIEN	т	Aller	Price & S	Scar	ratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/2	019		REF	BH411	
PROJE	СТ	Soils	Investiga	ation					LOGGED		CHECKED				Sheet	1 OF	1
SITE		Culb	urra Road	d, W	est Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQUIP	ΛΕΝΤ			Pu	ısh Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXCAV	ATION	I DIME	NSIONS	ø5	50 mm x 1.20 m depth				NORTHING		ASPECT	Northwe	est		SLOPE	<5%	
	D	rilling		Ί	Sampling				<u>'</u>	Fi	ield Material D	escript	on		!		
METHOD	KESISTANCE WATER	рертн	(metres)			RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS	
			0.20	. 5	3365/BH11/0.0-0.2/S/1 0 0.00 m 3365/BH411/0.0-0.1/S/1 0 0.00 m			SL	TOPSOIL: Sandy Lo medium grained san	OAM; low plasticity; dark band; with roots; pedal.	orown; with fine to		St	TOPSC			
Tq v	Not Encountered	0	5	3	3365/BH411/p.4-0.6/S/1 0 0.40 m			МС	MEDIUM CLAY; me apedal. Grey, red and red- y	dium plasticity, yellow-bro	own and orange-n	ed; — M	PL) VS		ŪAL SOIL		
			1.20	[) 1.00 m												-
		2	_ _ _ _						Hole Terminated at (Target depth reach								-
		2	5—														- - - - -
		3	5 —														- - - -
			0														- - - - -
		353		EX	CAVATION LOG TO	BI	E REA	D IN	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI) AB	BREVIAT	TIONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLII	ENT	Α	Illen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	22/08/2019	COMPLETED	22/08/20	19		(EF	BH412	
PRO	DJEC	T S	Soils Inv	estigation	on				LOGGED		CHECKED			c _h	neet	1 OF 1	
SITI	Ξ	c	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Shrubs				NO. P1203365	
EQL	IIPME	NT			Push Tube				EASTING		RL SURFACE	m		DA	ATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS	Ø50 mm x 0.80 m depth				NORTHING		ASPECT	North		SL	OPE	<5%	
		Dril	ling		Sampling				•	Fi	ield Material D	escriptio	n				
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL RVATIONS	
					3365/BH412/001-0.1/S/1 D 0.00 m 3365/BH412/0.1-0.2/S/1			SL .	TOPSOIL: Sandy Lo	DAM; low plasticity; dark b	prown; trace roots			TOPSOIL			
PT	М	Not Encountered	- - 0.5 — -	0.15	3365/BH412/0.1-0.2/S/1 D 0.10 m 3365/BH412/0.1-0.2/S/2 D 0.10 m 3365/BH412/0.1-0.2/S/3 D 0.10 m 3365/BH412/0.15/S/1 D 0.15 m 3365/BH412/0.2-0.3/S/1 D 0.20 m 3365/BH412/0.6-0.8-/S/1 D 0.60 m			MC	Nith subrounded to	subangular gravels to medium plasticity; yelli v.	ow-brown; apeda	J ıl. M (< <pl< td=""><td>)</td><td>RESIDUAL</td><td>SOIL</td><td></td><td></td></pl<>)	RESIDUAL	SOIL		
				0.00					Hole Terminated at Target depth reach								
			1.0 —						raiget deptir reacti	eu)							_
			=														-
			-														
			_														
			1.5 —														_
			-														
			_														
			-	-													-
			2.0 —														-
			-														
			_														-
			-														
			2.5														-
			-														-
			-														
			-														
			3.0 —														_
			-														
			-														
			3.5 —														-
			- 3.3														-
			-														
			-	-													-
			4.0 —														_
			-														
			-														-
			_														
			4.5 —														_
			-														
			-														-
			_														
					EXCAVATION LOG TO	D P F	DE ^	D IN C			DEDODT NOT	TES AND	ΔΡΡΙ	DEVIVION	NS		
					LAGAVATION LOG TO	, טכ	LINEA	ט ווע ט	CINOUCTION WI	THE ACCOUNT AINTING	ALI ORT NOT	LO AND	\DD	NEVIATIOI	110		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	А	llen Prid	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/0	08/20	19		REF	BH413
PR	OJEC	тв	oils Inve	estigatio	on				LOGGED		CHECKED					Ohrast	4.05.4
SIT	Έ	С	ulburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shri	ubs			Sheet PROJECT	1 OF 1 NO. P1203365
EQI	JIPME	NT			Push Tube				EASTING		RL SURFACE	m				DATUM	AHD
EXC	CAVAT	ION E	IMENSI	ONS	Ø50 mm x 0.50 m depth				NORTHING		ASPECT	Nor	th			SLOPE	<5%
		Dril	ling		Sampling			z		Fi	ield Material D		Ė				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		AD OBSE	CTURE AND DITIONAL ERVATIONS
		tered	-		3365/BH413/0.0-0.1/S/1 D 0.00 m 3365/BH413/0.1-0.2/S/1			SL 7	TOPSOIL: Sandy Lorace quartz/ironstor	DAM; low plasticity; dark b ne gravels; pedal.	prown; trace roots	;			TOPSO	IL	-
PT	М	Not Encountered	- - -	0.20	D 0.10 m 3365/BH413/0.1-0.2/S/2 D 0.10 m 3365/BH413/0.1-0.2/S/3 D 0.10 m 3365/BH413/0.3-0.4/S/1	-	<i>Y///</i>	MC N	MEDIUM CLAY; low subrounded to suba	r to medium plasticity; yellingular gravels.	low-brown; trace	(M < <pl< td=""><td>)</td><td>RESIDU</td><td>JAL SOIL</td><td>-</td></pl<>)	RESIDU	JAL SOIL	-
			0.5 	0.30	D 0.30 m	Г		H (Hole Terminated at Target depth reach	0.50 m ed)							
			-						9	,							-
			-														-
			1.0 —														=
			-														-
			2.0 —														_
			-														-
																	-
			2.5 —														-
																	-
			-														-
			3.0														-
			-														-
																	-
1			-														-
			3.5														-
			-														-
			-														-
			4.0 —														-
			-														-
]														-
			4 5														-
			4.5 —														-
			-														-
			-														-
P.	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																
					e.2				MARTENS &	ASSOCIATES PTY LTD)			-			1

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLII	ENT	Α	Illen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	22/08/2019	COMPLETED	22/08/20	19		KEF	BH414	
PRO	JEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SITI	Ξ	С	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Shrubs				NO. P1203365	
EQU	IPME	NT			Push Tube				EASTING		RL SURFACE	m		ı	DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS .	Ø50 mm x 0.60 m depth				NORTHING		ASPECT	North			SLOPE	<5%	
		Dril	lling		Sampling					Fi	eld Material D	escriptio	n				
МЕТНОD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC		MOISTURE			ADI	CTURE AND DITIONAL ERVATIONS	
		ntered	-		3365/BH414/0.0-0.1/S/1 D 0.00 m 3365/BH414/0.0-0.1/S/1			SL 1	OPSOIL: Sandy Lovith fine to medium	OAM; low plasticity; dark b grained sand; trace roots	prown and dark g ; pedal.			TOPSOIL	-		
PT	М	Not Encountered	0.5—	0.20	D 0.10 m 3365/BH414/0.1-0.2/S/2 D 0.10 m 3365/BH414/0.1-0.2/S/3 D 0.10 m 3365/BH414/0.4-0.6/S/1 D 0.40 m		<i>Y///)</i>	MC N	/IEDIUM CLAY; low ed; apedal.	to medium plasticity; yell	ow-brown with tra	ace M (< <pl< td=""><td>)</td><td>RESIDUA</td><td>AL SOIL</td><td></td><td></td></pl<>)	RESIDUA	AL SOIL		
				0.60				ŀ	lole Terminated at	0.60 m							_
			1.0 —						Target depth reach	ed)							- - - -
			-														-
			1.5 —														_
			-														-
			-	-													
			-														-
			-														-
			2.0 —														_
			_														-
			-														-
			-														
			2.5 —														-
			-														-
			=	-													=
			-														
			3.0 —														_
			-														-
			-														
			-														
			-														-
			3.5 —														-
			_														
			_														
			_														=
			4.0 —														-
			-														
			-														-
			-	-													-
			4.5														
			4.5 —														_
			-														-
			-														
			-														
				l F	 EXCAVATION LOG TO	L BF	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	L ABBI	L REVIATIO	ONS		
											1						

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLII	ENT	Α	Illen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		KEF	BH415	
PRO	DJEC	TS	Soils Inv	estigation	on				LOGGED		CHECKED				Sheet	1 OF 1	
SITI	Ξ	С	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQL	IIPME	NT			Push Tube				EASTING		RL SURFACE	m		l l	DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS .	Ø50 mm x 0.90 m depth				NORTHING		ASPECT	North		:	SLOPE	<5%	
		Dril	lling		Sampling					Fi	ield Material D	escription	n				_
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
					3365/BH415/0.0-0.1/S/1 D 0.00 m			SL	TOPSOIL: Sandy LO	DAM; low plasticity; dark b	prown; with fine to			TOPSOIL	-		_
		Not Encountered	-	0.20	3365/BH415/0.0-0.1/S/1 D 0.10 m 3365/BH415/0.1-0.2/S/2 D 0.10 m 3365/BH415/0.1-0.2/S/3			CL			n; with fine to coa			RESIDUA	AL SOIL		
ΡΤ	М	Enc	0.5 —	0.10	D 0.10 m 3365/BH415/0.3-0.4/S/1	_		CL	Fine Sandy CLAY L	– – – – – – – – OAM; low plasticity; orang ubangular quartz/ironstor	ge-brown;	— – M a. (< <pl< td=""><td></td><td></td><td></td><td></td><td></td></pl<>					
		Not	0.5		D 0.30 m 3365/BH415/0.4-0.6/S/1				willisubrounded to s	ubangulai qualiz/iionstoi	rie graveis, apeud	al.					
			-	-	D 0.40 m 3365/BH415/0.6-0.8/S/1												
			-	0.90	D 0.60 m												
			1.0 —	0.90					Hole Terminated at								
			1.0 —						(Target depth reach	eu)							
			-														
			-														
			1.5 —														_
			-														
			-														
			-														
			2.0 —														-
			-														
			=														-
			_														
			2.5 —														-
			-														-
			_														
			-														
			3.0 —														-
			_														
			-														
			-														-
			3.5 —														-
			-														
			-														
			4.0 —														
			-														
			-														
			-	-													-
			4.5 —														_
			-														
			-														
			-														
									ON ILIOTICS	FIL A 000 A 10 A 1 1 1 1 1 1 1 1 1 1 1 1 1	DEDODE		A D =	DE #4.7	ONC		
	_			[EXCAVATION LOG TO	βl	E KEA	ט IN (CONJUCTION WI	I H ACCOMPANYING	KEPOK [NOT	ES AND	ABB	KEVIATI(UNS		_

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

DECAVATION LOS TO DE READ IN CONJUSTION Water passed in process of the PROJECT NAME (1995) DECAVATION LOS TO DE READ IN CONJUSTION Water passed in process of the passed	CLII	ENT	Α	Allen Pri	ce & Sca	arratts Pty Ltd				COMMENCED	22/08/2019	COMPLETED	22/08/20	19		REF	BH416	
Column C	PRO	DJEC	TS	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
Description Sampling Sampli	SITI	Ξ	c	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs					
Drilling Sampling SAMPLE OR SAMPLE O	EQL	IIPME	NT		F	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
SAMPLE OR SAMP	EXC	AVAT	ION E	DIMENSI	ONS ,	Ø50 mm x 0.80 m depth				NORTHING		ASPECT	Northeas	t		SLOPE	<5%	
1.5 1.5			Dril	ling		Sampling	_				Fi	ield Material D		_				
10	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	DITIONAL	
1.5 — 1.0 — 1.5 —			Not Encountered	- - - - 0.5	0.35	D 0.00 m 3365/BH416/0.0-0.1/S/1 D 0.10 m 3365/BH416/0.1-0.2/S/2 D 0.10 m 3365/BH416/0.1-0.2/S/3 D 0.10 m 3365/BH416/0.2-0.3/S/1 D 0.20 m 3365/BH416/0.5-0.8/S/1			SL CL- CI	MEDIUM CLAY; low yellow-brown; trace	nd; trace roots; pedal. ; low to medium plasticity; to medium plasticity; ora subangular ironstone gra	; yellow-brown;			TOPSOI			
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				1.5 —						(Target depth reach	ed)							
					E	EXCAVATION LOG TO	BI	E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABBI	REVIAT	ONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	A	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	019	KEF	BH41/
PRO	DJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED			Sheet	1 OF 1
SIT	Ξ	C	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	Iè/EGETATION	Shrubs		l	Т NO. P1203365
EQL	IIPME	NT			Push Tube				EASTING		RL SURFACE	m		DATUM	AHD
EXC	AVAT	ION [DIMENSI	ONS .	Ø50 mm x 1.10 m depth				NORTHING		ASPECT	North		SLOPE	<5%
			lling		Sampling					Fi	ield Material D		_		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	STRU AD OBS	ICTURE AND IDITIONAL ERVATIONS
			-		3365/BH417/0.0-0.1/S/1 D 0.00 m 3365/BH417/0.0-0.1/S/2			SL	TOPSOIL: Sandy LO fine to medium grain	DAM; low plasticity; dark b ned sand; trace shrubs/gr	prown and grey; vass roots; pedal.	vith	F	TOPSOIL	
		ıntered	- -	0.20	D 0.00 m 3365/BH417/0.0-0.1/S/3 D 0.00 m 3365/BH417/0.0-0.2/S/1 D 0.00 m		<i>Y///</i>	MC		dium plasticity; yellow-bro	own; apedal.		St	RESIDUAL SOIL	
PT	М	Not Encountered	0.5 —		3365/BH417/02-0.3-0.5/ D 0.20 m	S/1			Yellow, grey and rec	1.		M (< <p< td=""><td> </td><td></td><td>-</td></p<>	 		-
			-	0.80	3365/BH417/0.8-1.0/S/1 D 0.80 m				Yellow, pale grey an	d red.			VSt		
			1.0 —	1.10											
			- -												
			1.5 — -								-				
			-												
			2.0 —					-							
			2.5—												-
			- -												
			3.0 —												-
			-												
			3.5 —												- - -
			- - -												
			4.0												-
			- 4.5												_
			-												
				<u> </u>	 EXCAVATION LOG TO	BE	L E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND) ABB	<u> </u> REVIATIONS	
		_								ASSOCIATES DTV I TD			_		_

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Α	llen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		REF	BH418	
PR	OJEC	T S	oils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E	С	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQI	JIPME	NT		1	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	IONS ,	250 mm x 1.00 m depth				NORTHING		ASPECT	North			SLOPE	<5%	
		Dril	ling		Sampling				'	Fi	ield Material D	escriptio	n				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD OBSE	CTURE AND DITIONAL ERVATIONS	
Ы	М	Not Encountered	- - - 0.5—	0.20 0.40 0.45	3365/BH418/0.0-0.1/S/1 D 0.00 m 3365/BH418/0.0-0.1/S/2 D 0.00 m 3365/BH418/0.0-0.1/S/3 D 0.00 m 3365/BH418/0.0-0.2/S/1 D 0.00 m 3365/BH418/02-0.3-0.3/ D 0.20 m			LC	with fine to medium slightly pedal. LIGHT CLAY: low to apedal. With subangular iro 0.42m.	OAM; low plasticity; dark of grained sand; trace shrut or medium plasticity; yellow onstone gravels; inferred in edium plasticity; yellow-ora	bs/grass roots;	/_M (< <pl< td=""><td>.)</td><td>RESIDU</td><td>IL VAL SOIL</td><td></td><td>- - - -</td></pl<>	.)	RESIDU	IL VAL SOIL		- - - -
			1.0	1.00	3365/BH418/0.9-1.0/S/1 D 0.90 m				Hole Terminated at (Target depth reach								-
			2.0 —														- - - -
			2.5 —														- - - - -
			3.5 —														- - - -
			4.0 —														- - - - -
			- -	-													- - -
				E	EXCAVATION LOG TO	BE	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	IONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Δ	Allen Pri	ce & Sca	arratts Pty Ltd				COMMENCED	21/08/2019	COMPLETED	21/08/20	19		REF	BH419	
PR	OJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E	C	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shrubs				NO. P1203365	
EQI	JIPME	NT		F	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS ,	Ø50 mm x 1.00 m depth				NORTHING		ASPECT	North			SLOPE	<5%	
			lling		Sampling			-		Fi	ield Material D		_	1			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
			-	0.25	3365/BH419/0.0-0.1/S/1 D 0.00 m 3365/BH419/0.1-0.2/S/1 D 0.10 m 3365/BH419/0.1-0.2/S/2			SL	TOPSOIL: Sandy LO with fine to medium	DAM; low plasticity; dark b grained sand; trace roots	orown and dark g ;; pedal.			TOPSO			
Ы	М	Not Encountered	0.5—		D 0.10 m 3365/BH419/0.1-0.2/S/3 D 0.10 m 3365/BH419/0.5-0.8/S/1 D 0.50 m			MC	MEDIUM CLAY; low trace subrounded to	to medium plasticity; yelli subangular ironstone gra	ow-brown and rea	d; M (< <pl< td=""><td>_)</td><td>RESIDU</td><td>JAL SOIL</td><td></td><td>-</td></pl<>	_)	RESIDU	JAL SOIL		-
		No	-		2 0.00 m												
				1.00			-		Hole Terminated at	1 00 m							
			-														
			_														
			-									-					
			1.5—									-					
			-														
			-														
			2.0 —														-
			-														
			_														-
			-														
			2.5 —														_
			-														-
			_														
			3.0 —														_
			-														=
			_														
			-														
			3.5—														
			-														
			-														
			4.0 —														_
			-														
			-														
			-														
			4.5														-
			-														-
			-														-
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND																
				E	EXCAVATION LOG TO	B	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	IONS		

CLI	ENT	Α	llen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08	/201	19		REF	BH420	
PR	OJEC	T S	oils Inv	estigatio	on				LOGGED		CHECKED					Sheet	1 OF 1	1
SIT	Έ	C	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Shrub	s				NO. P1203365	
EQI	JIPME	NT		1	Push Tube				EASTING		RL SURFACE	m				DATUM	AHD	
EXC	CAVAT	ION E	DIMENSI	IONS	1.40 m depth				NORTHING		ASPECT	North				SLOPE	<5%	
		Dril	ling		Sampling				•	Fi	eld Material D	escrip	tio	n				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
			-		3365/BH420/0.0-0.2/S/1 D 0.00 m 3365/BH420/0.0-0.3/S/1			SL	TOPSOIL: Sandy LO medium grained sar	DAM; low plasticity; dark b	prown; fine to			St	TOPSO	IL		-
	M 	əred	- 0.5	0.20	D 0.00 m 3365/BH420/0.4-0.6/S/1 D 0.40 m		<i>\////</i>		LIGHT CLAY; low to apedal; with subrour Yellow-brown; no iro	medium plasticity; yellow nded to subangular ironst nstone gravels.	r-brown and red; cone gravels.				RESIDU	JAL SOIL		- — — -
PT	Н	Not Encountered	1.0 —	0.70	3365/BH420/0.8-1.0/S/1 D 0.80 m 3365/BH420/1.2-1.4/S/1 D 1.20 m			MC	MEDIUM CLAY; me apedal; trace subrou	dium plasticity; red, pale ç unded ironstone gravels.	grey and yellow;		M <pl< td=""><td>) VSt</td><td></td><td></td><td></td><td>- - - - -</td></pl<>) VSt				- - - - -
			1.5 — - -	1.40					Hole Terminated at (Target depth reach									- - -
			2.0 —	- - -														- -
			2.5 —	-														- - - -
			3.0 —															- - -
			- 3.5—	-														- - -
			- - 4.0 —															- - -
			- - 4.5 —	-														- - -
			- - -															- - -
				Е	EXCAVATION LOG TO	BI	E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	TES AI	ND.	ABBI	REVIAT	IONS		

CLII	ENT	Α	Illen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08	3/201	19		KEF	BH421	
PRO	DJEC	тѕ	Soils Inv	estigation	on				LOGGED		CHECKED					Sheet	1 OF 1	
SITI	Ξ	С	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	Iè/EGETATION	Grass	s				NO. P1203365	
EQL	IIPME	NT			Push Tube				EASTING		RL SURFACE	m				DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS	0.90 m depth				NORTHING		ASPECT	North	1		;	SLOPE	<5%	
		Dril	lling		Sampling					Fi	ield Material D	escrip	otio	n				
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	HALITRIOM	CONDITION	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
		untered	-	0.10	3365/BH421/0.0-0.3/S/1 D 0.00 m			SL T	OPSOIL: Sandy L0 ne to medium grair lo grass roots.	DAM; low plasticity; dark g ned sand; pedal; with gras	grey and dark bro ss roots.	wn;	M <pl< td=""><td></td><td>TOPSOIL</td><td>-</td><td></td><td>-</td></pl<>		TOPSOIL	-		-
PT	М	Not Encountered	 0.5 — 	0.40	3365/BH421/0.6-0.8/S/1 D 0.60 m			LC L	IGHT CLAY; low to ace subrounded in	medium plasticity; yellow onstone gravels.	<i>y</i> -brown; apedal;	(<	 M <pl)< td=""><td>St</td><td>RESIDUA</td><td>AL SOIL .</td><td></td><td></td></pl)<>	St	RESIDUA	AL SOIL .		
				0.90														
			1.0 —						lole Terminated at Farget depth reach									-
			-															
			1.5 —							_								
			-															
			2.0 —															-
			- - -															-
			2.5—															-
			-															
			3.0 —															-
			- 3.5—															
			-															
			=															-
			4.0 —															-
			- -															-
			4.5															-
			-															-
			-															
			-		EXCAVATION LOG TO) RI	F RFAI	D IN CO	ON.JUCTION WIT		REPORT NOT	TES Δ1	NΠ	ARRI	REVIATI	ONS		-
					LAGRATURI LOG TO	וט י	_ 1\L/\	J 11 UC	2.4000110IN VVI		TEL OILT NOT	AI	4D /	וטט.	~_ v I/\ I I	2110		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Α	llen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/2	019		REF	BH422	
PR	OJEC	тѕ	Soils Inv	estigation	on				LOGGED		CHECKED				Sheet	1 OF	1
SIT	E	С	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Grass				NO. P1203365	
EQI	JIPME	NT			Push Tube				EASTING	150.728988	RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	IONS	0.90 m depth				NORTHING	-34.923648	ASPECT	Northwe	est		SLOPE	<5%	
			ling		Sampling					Fi	ield Material D		$\overline{}$				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		ADI OBSE	CTURE AND DITIONAL ERVATIONS	
			=	0.10	3365/BH422/0.0-0.3/S/1 D 0.00 m			SL	TOPSOIL: Sandy LO fine to medium grain No roots.	DAM; low plasticity; dark g ned sand; pedal; trace roo	grey and dark bro ots.		F	TOPSC	DIL		
Ы	М	Not Encountered	0.5—	0.35 0.40					Trace subrounded in	ronstone gravels. medium plasticity; yellow	-brown; apedal.	/ M (<p< td=""><td>St L)</td><td>RESIDI</td><td>ŪĀĒ SOIĒ</td><td></td><td></td></p<>	St L)	RESIDI	ŪĀĒ SOIĒ		
		ž	- -										vs	t			
			1.0 —	0.90					Hole Terminated at (Target depth reach								
			-	-													
			1.5 — -	=													- -
			-	-													-
			2.0 —														-
			-	-													
			2.5	-													-
			- - 3.0—														
			-	_													
			3.5—	-													-
			-	-													
			4.0 —	-													- -
			- -														- -
			4.5 	-													-
			-														- -
				<u> </u>	 EXCAVATION LOG TO) B	L E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES ANI) ABI	I BREVIAT	TIONS		

martens

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	F	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20)19		REF	BH423	
PR	OJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E		Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Trees				NO. P1203365	
EQI	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	FAVA	ION [DIMENSI	ONS	1.20 m depth				NORTHING		ASPECT	West			SLOPE	<5%	
		Dri	lling		Sampling				<u>'</u>	Fi	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS	
	М		-		3365/BH423/0.0-0.2/S/1 D 0.00 m 3365/BH423/0.0-0.3/S/1 D 0.00 m			SL T	OPSOIL: Sandy Lone grained sand; posioned).	OAM; low plasticity; dark g edal; trace shrubs roots (grey and dark bro lantana, previous	wn;		TOPSO	IL		
		per	-	0.40													
PT	н	Not Encountered	0.5 —		3365/BH423/0.5-0.8/S/1 D 0.50 m			MC N	EDIUM CLAY; me ed; apedal.	dium to high plasticity; ye	llow, pale grey an	M (<pl to M</pl 		RESIDU	JAL SOIL		_
			1.0 —									(< <p< td=""><td>Ĺ)</td><td></td><td></td><td></td><td>-</td></p<>	Ĺ)				-
				1.20													
			-														
			-														
			1.5—								-						
			_														
			-	-													
			-														
			2.0 —	-													-
			_														
			-														
			-														
			2.5 —	-													-
			_														
			-														
			-														
			3.0 —														-
			_														
			-														
			-														
			3.5 —														-
			-	1													
			-														
			4.0 —														-
			_														
			-														
			-														
			4.5														-
			-														
			-														
			-														
			I	<u> </u>	I EXCAVATION LOG TO) BI	E REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	TONS		
		/)						MARTENS &	ASSOCIATES PTY LTD	,		_			1	

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	Δ	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		REF	BH424	
PR	OJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	
SIT	E	C	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Grass an	d tres	s		NO. P1203365	
EQL	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS	0.90 m depth				NORTHING		ASPECT	North			SLOPE	<5%	
			lling		Sampling			-		Fi	eld Material D						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS	
			-	0.05 0.15 0.20	3365/BH424/0.0-0.2/S/1 D 0.00 m 3365/BH424/0.0-0.3/S/1 D 0.00 m			SL	pedal; trace roots. No roots.	DAM; low plasticity; dark g subangular ironstone gra	, ,			TOPSO	JAL SOIL		
		Encountered	-	0.30				LC		medium plasticity; yellow		- J		RESIDU	JAL SUIL		
Ы	М-Н	Enco	-		3365/BH424/0.4-0.6/S/1 D 0.40 m		1		Grey and yellow; no	ironstone gravels.		M (< <pl< td=""><td>VSt</td><td></td><td></td><td></td><td></td></pl<>	VSt				
		Not	0.5		D 0.40 III							(-
			-														-
			-														
			1.0 —	0.90					Hole Terminated at (Target depth reach					0.90: Re	efusal on silt	stone rock.	_
			-														
			-														
			-														
			1.5 —	-							_						
			-														
			-														
			_														
			2.0 —														-
			-														
			_														
			-														
			2.5 —														-
			_														
			-														
			-														
			3.0 —														-
			_														
			-														
			-														
			3.5 —														
			-														
			-														
			4.0 —														_
			-														
			-	-													
			_														
			4.5 —														_
			-														
			-														
			-														
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBR												L REVIAT	IONS		_	
					2			•						,			_

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

COSED CONTROL CONTRO	CLI	ENT	1	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08	8/20	19		KEF	BH425	
Column Process March Column Col	PR	DJEC	ET S	Soils Inv	estigatio	on				LOGGED		CHECKED					Observat	4.05.4	
PASTING	SIT	E	(Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Shru	ıbs a	nd na	ture trees			
Sampling Sampli	EQL	JIPME	NT			Push Tube				EASTING		RL SURFACE	m						
SOLFROCK MATERIAL DESCRIPTION STRUCTURE AND ADDITIONAL MATERIAL DESCRIPTION ADDITIONAL MATERIAL DESCRIPTION ADDITION ADDITIONAL MATERIAL DESCRIPTION ADDITION ADDITIONAL MATERIAL DESCRIPTION ADDITION	EXC	AVAT	ION	DIMENSI	ONS	1.40 m depth				NORTHING		ASPECT	North	h			SLOPE	<5%	
No. 1.0			Dri	illing		Sampling					Fi	ield Material D		_	_				
Section TopSoil TopS	МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	r di Foloni	MOISTURE	CONSISTENCY DENSITY		AD	DITIONAL	
No. Subcounded to subseque in romation gravels.				_	0.14				SL T	OPSOIL: Sandy Lo	OAM; low plasticity; dark g ned sand; slightly pedal.	grey and dark bro				TOPSO	IL		
10				-	0.77			NY/X	LC S	ubrounded to suba	angular ironstone gravels.		/			RESIDU	JAL SOIL		
10		М	untered	0.5	0.60														-
1.0	PT		ot Enco	-	-				MC N	EDIUM CLAY; me ace subrounded in	dium plasticity; grey, yello onstone gravels.	ow and red; apeda	al; (<		1				
1.10 HC HEAVY CLAY: medium to high plasticity; grey, yellow and rect. H			ž	-															
15				1.0 —	1.10				HC F	EAVY CLAY; med	ium to high plasticity; grey								-
1.5— 1.5— 1.5— 2.5— 2.5— 3.0— 4.0— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5		М-Н		-	1 40				a	pedal.					Н				
2.5— 3.0— 4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				1.5	1.40														-
2.5— 3.0— 4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
2.5— 3.0— 4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
3.0 — 4.0 — 4.5 — EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				2.0 —															-
3.0 — 4.0 — 4.5 — EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
3.0 — 4.0 — 4.5 — EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				25-															_
3.5— 4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
3.5— 4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				3.0 —															-
4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
4.0— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
4.5— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				3.5															=
4.5— 4.5— EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				4.0 —															-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-	-														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-															
				4.5 -															-
				-															
				-															
		_		25,4		EXCAVATION LOG TO) BE	REA	D IN CO				ES A	ND	ABB	REVIAT	IONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Colored Colo	CLI	ENT	A	llen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		REF	BH426	
Cubura Road West Cubura Cocupies Cubura Road West Cubura Cubura Road Road Road Road Road Road Road Roa	PR	DJEC	T S	oils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF :	1
PROFITE Surprise	SIT	E	c	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Grass					
	EQL	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
SAMPLE CR SAMP	EXC	AVAT	ION E	DIMENSI	ONS	0.90 m depth				NORTHING		ASPECT	Southwe	st		SLOPE	<5%	
0.10			Dril	ling		Sampling				'	Fi	ield Material D	escription	on				
0.10	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		ADI	DITIONAL	
1.5 — Hole Terminated at 0.00 m (farget depth received) 2.5 —				=	0.10	D 0.00 m 3365/BH426/0.0-0.3/S/1			SL	slightly pedal; trace	OAM; low plasticity; dark groots.	grey and dark bro			TOPSOI	L		-
1.5 — Hole Terminated at 0.00 m (farget depth received) 2.5 —	PT	М-Н	Encounter	-	0.30				LC	LIGHT CLAY; low to apedal.	medium plasticity; yellow	. — — — — — /-brown and oran	М		RESIDU	ĀĒ SOIĒ		
1.5— 1.5— 2.5— 3.0— 4.5— 4.5—			Not	0.5 - -		3365/BH426/0.5-0.8/S/1 D 0.50 m								St				
1.5— 2.5— 2.5— 3.0— 4.0— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5— 4.5					0.90													-
2.5— 2.5— 3.5— 4.0— 4.5—				1.0 —									-					
2.5— 2.5— 3.5— 4.0— 4.5—				-														
25- 30- 35- 40- 45-				1.5 —														-
25- 30- 35- 40- 45-				-														
3.5— 4.0— 4.5—				2.0 —														-
3.5— 4.0— 4.5—				=														
4.0—				2.5														-
4.0—				-														
4.5—				3.0 —														
4.5—				-														
4.5—				-														-
4.5—				-														
4.5—				-														
				4.0 —														-
				-														-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				4.5												-		
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		
					-	EXCAVATION LOG TO	BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	ONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	A	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		REF	BH427	
PR	OJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	1
SIT	E		Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	né/EGETATION	Small sh	rubs a	nd grass		NO. P1203365	•
EQI	JIPME	NT		1	Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
EXC	AVAT	ION [DIMENSI	ONS	1.00 m depth				NORTHING		ASPECT	North			SLOPE	<5%	
			lling		Sampling					Fi	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS	
		untered	-	0.10	3365/BH427/0.0-0.2/S/1 D 0.00 m 3365/BH427/0.0-0.3/S/1 D 0.00 m			SL	pedal; trace grass ro	DAM; low plasticity; dark goots.				TOPSO	JAL SOIL		
Ы	М	Not Encountered	0.5 — -	0.80								M (<pl< td=""><td>St</td><td></td><td></td><td></td><td>- -</td></pl<>	St				- -
			-	1.00	3365/BH427/0.8-1.0/S/1 D 0.80 m				Pale grey, yellow an	d red.							
			1.0	7.00					Hole Terminated at (Target depth reach								
			1.5 —														-
			- - -														
			2.0 —														-
			- -														
			2.5 — - -														- - -
			3.0														· ·
			- -														
			3.5—														- -
			- - -														
			4.0 —														-
			- - 4.5														-
			4.5 — - -														-
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES A														10115		-
				Е	EXCAVATION LOG TO) BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIAT	IONS		

CLII	ENT	Α	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19	1	KEF	BH428	
PRO	DJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				heet	1 OF 1	
SITI	=	c	Culburra	Road,	West Culburra				GEOLOGY	Wandrawandian Siltstor	ne/EGETATION	Shrubs				NO. P1203365	
EQL	IPME	NT			Push Tube				EASTING		RL SURFACE	m		С	ATUM	AHD	
EXC	AVAT	ION E	DIMENSI	ONS	0.80 m depth				NORTHING		ASPECT	Northwes	st	S	LOPE	<5%	
		Dril	lling		Sampling					Fi	ield Material D	escriptio	n				
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL RVATIONS	
			-		3365/BH428/0.0-0.2/S/1 D 0.00 m 3365/BH428/0.0-0.3/S/1			SL 7	TOPSOIL: Sandy LO	DAM; low plasticity; dark g grass roots and coal.	grey; fine grained			TOPSOIL			
		Not Encountered	-	0.20	D 0.00 m		7///	FSCL F	ine Sandy CLAY; lo	ow to medium plasticity; y	ellow and pale gr	-ey;		RESIDUA	SOIL -		
Ы	м	Enco∟	_					1	apedal.			M (< <pl< td=""><td></td><td></td><td></td><td></td><td></td></pl<>					
		Not E	0.5 —		3365/BH428/0.5-0.7/S/1 D 0.50 m							(KKPL	-)				-
			-	0.80													-
			_						Hole Terminated at Target depth reach								
			1.0 —							_							
			-														
			-														
			1.5 —							_							
			-														
			-								-						
			2.0 —														_
			-														
			=														-
			2.5 —														-
			-														-
			-														
			3.0 —														-
			-														=
			-														
			3.5 <i>-</i>														-
			J.J —														-
			-														
			=														=
			4.0 —														-
			-														-
			-														
			4.5 —														-
			- -														
																	-
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREV												DEL (1A TIC	MC			
	_			ı	EACAVATION LOG TO	BE	- KEA	NIN C	ONJUCTION WI	I IT ACCOMPANYING	KEPUKI NOT	ES AND	ARR	KEVIATIC	NS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Columna Colu	CLI	ENT	Α	Allen Pri	ce & Sc	arratts Pty Ltd				COMMENCED	20/08/2019	COMPLETED	20/08/20	19		REF	BH429	
Cubura Road West Cubura Cocupies Cubura Road West Cubura Cubura Road Road Road Road Road Road Road Roa	PR	OJEC	T S	Soils Inv	estigatio	on				LOGGED		CHECKED				Sheet	1 OF 1	1
Proceedings	SIT	E	c	Culburra	Road, \	West Culburra				GEOLOGY	Wandrawandian Siltstor	e/EGETATION	Grass					
	EQI	JIPME	NT			Push Tube				EASTING		RL SURFACE	m			DATUM	AHD	
Dec 10 10 10 10 10 10 10 1	EXC	AVAT	ION E	DIMENSI	ONS	0.80 m depth				NORTHING		ASPECT	Northwe	st		SLOPE	<5%	
Company Comp				lling		Sampling	_				Fi	ield Material D		_				
Company Comp	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY		ADI OBSE	DITIONAL	
2.5 — 3.5 — 4.5 —			ntered	-	0.20	3365/BH429/0.0-0.2/S/1 D 0.00 m 3365/BH429/0.0-0.3/S/1 D 0.00 m		\mathbb{K}	SL	trace grass roots.			l; M (< <pi< td=""><td></td><td>TOPSOI</td><td></td><td></td><td></td></pi<>		TOPSOI			
1.5 — 1.5 — 2.5 — 4.5 —	PT	М	Not Encou	0.5—									l _M) St				-
15— 20— 25— 35— 40— 45—					0.80													
25— 25— 30— 40— 45—				1.0 —						(Target depth reach	ed)							-
25— 25— 30— 40— 45—				_														
25— 25— 30— 40— 45—				-														
25— 25— 30— 40— 45—				1.5—														_
3.0— 3.5— 4.5— 4.5—				-														
3.0— 3.5— 4.5— 4.5—				-														
3.0— 3.5— 4.5— 4.5—				_														
3.5—				2.0 —														_
3.5—				-														-
3.5—				_														
3.5—				-														
4.0—				2.5 —														-
4.0—				_														-
4.0—				-														
4.0—				-														
4.5—				3.0 —														-
4.5—				-														
4.5—				-														
4.5—				35-														-
4.5—				-														
4.5—				-														
4.5—				_														
				4.0 —														-
				-														
																		-
				-														
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				4.5 —														-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																		-
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-														=
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS				-														
					E	EXCAVATION LOG TO	BI	E REA	D IN C	CONJUCTION WI	TH ACCOMPANYING	REPORT NOT	ES AND	ABB	REVIATI	ONS		

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

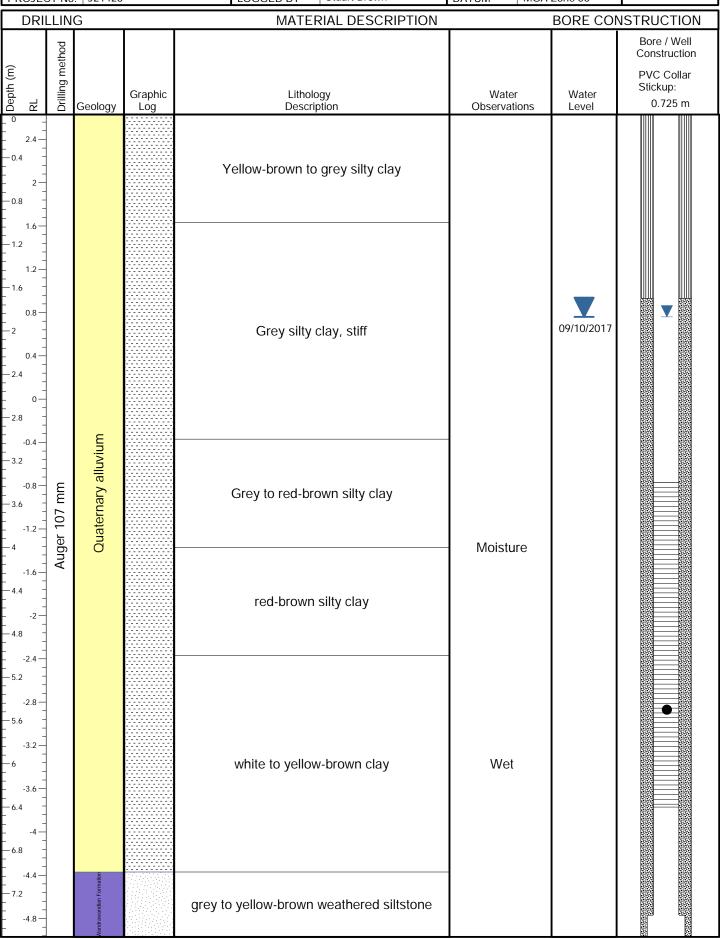
15 Annexure E: Groundwater Well Logs

CLI	EN	Γ	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	22.11.10		COMPLETE	D 22.1	1.10			REF		ВН	1
PRO	ΟJΕ	СТ	E	ngineer	ing Sei	rvices			LOGGED	GT		CHECKED	AN				Sheet 1			
SIT	E		С	ullburra	Road,	West Cu	ıllbu	ırra	GEOLOGY	Siltstone		VEGETATIO	N Gras	ses			PROJECT I	IO. P10	002842	
EQUI	PMEI	NT			Hydraulic	Auger			EASTING	NA		RL SURFAC	E NA							
_				ISIONS		4.75m depth			NORTHING	NA		ASPECT	Nort	h			SLOPE	2-39	6	
	EX	CAV	ΆT	ION DA			T	MA	TERIAL DA	ATA					SA	MPLIN	G & TES	TING		
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, n particle characteristics, orga	PTION OF STR. nottling, colour, pla anics, secondary a ontamination, odou	asticity, rocks, oxidation and minor components,	n,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER 1	WELL I	DETAI	LS Well Cover
Α	Nil	N	М	_ _0.25			sc	SILTY CLAYEY SAND -	– Dark brown	, fine grained sa	nds.		L	А	0.2	2842/1/0.	2		7. Y	Concrete, -
А	Nil	N	М	-0.45			sc	SILTY CLAYEY SAND	- Light grey,	fine grained san	nds,		L	A	0.4	2842/1/0.	4			
				0.43					inor gravels.		_/	F		А	0.5	2842/1/0.	5).5m bgl
Α	Nil	N	М	0.9			CL	SILTY CLAY - Brown/o tending to clay	orange, grave with gravels	els (1-15mm, 35% decreasing.	%),	St		A	1.0	2842/1/1.		4	В	entonite Seal _
Α	Nil	N	М	1.2			СН	CLAY - Gre	ey/orange/red	mottled.		VSt		^`	1.0	2042/1/1.		•	33 34	UPVC Pipe
А	Nil	Ν	М	1.6			CL	SANDY CLAY/E; SILTSTONE - Ligh gravels		v, cream bands,		VSt	MD	А	1.5	2842/1/1.	5		() (<u>)</u> (<u>)</u> (<u>)</u>	
				-				9.33.5	(-
A	Nil	N	D	<u>2.0</u>			EW	EXTREMELY TO HIGH	HI Y WFATHI	FRED SII TSTO	NF		MD	A	2.0	2842/1/2.	0	//]==		2.0
,		.,		_			HW						D					서를 티	<u>*</u>	_Sand Pack.
				_ 2.6										А	2.5	2842/1/2.	5	ΞΞ		-
				-																JPVC Screen.
Α	Nil	N	D	3.0			мw	MODERATELY\ GRA	WEATHERED AVELLY CLA										3.) 3.)	3 <u>.0</u>
				3.2															9_	
				-										A	3.5	2842/1/3.	5			_
	N.III	N		-			CL	CLAY/EXTREMELY	/ WEATHERE	ED SILTSTONE	-	F		"	0.0	2012170			1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	-
Α	Nil	N	М	E			EW		Grey.			St						MEE!	i de Esp	_
				4.0		===:													Ä	4 <u>.0</u> –
A	Nil	N	D	4.2			MW	MODERATELYV	WEATHERED) SII TSTONE			D	A	4.5	2842/1/4.	5 4.55m bgl			
				_ _4.75 _			IVIVV	MODERVILLE		0121010142.							4.55m bgi		Wel	l end plug.
				5.0 - - - -				Borehole termina to slightly	ted at 4.75m weathered sil											5 <u>.0</u> - - - - -
																				- - - 6.0
				_ _ _																- - -
																				-
				7.0																7.0
				Ē																- <u></u>
				F																-
				F																-
				E																_
				<u>8.0</u> –																8 <u>.0</u> -
				F																-
				E																=
				F																=
FC	UIP	/ENT	/MF	9.0 THOD SU	JPPORT	WATER		MOISTURE PENET	TRATION CONS	SISTENCY DENSIT	ГҮ	SAME	LING & T	ESTING				C	LASSIF	9. <u>0</u>
N X	Na Ex	tural e	expos exca	ure SF vation SC	Shoring Shotcret	N Non te X Not	e obse measu	erved D Dry L Lo rred M Moist M Mo	w VS oderate S	Very Soft VL Ve Soft L Lo	ery Loos oose	e A Au B Bu	iger samp ilk sample	ole e	pp S	Standard	netrometer penetration te	S'	YMBOL	
B⊦ E HA	Ex	ckhoe cavato nd aug	or		No supp	ort *	er leve	Wp Plastic limit R Re	fusal St	Stiff D De	edium De ense	ense U Uı D Di	ndisturbed sturbed s	l sample ample	VS	S Vane she CP Dynami	ar ic cone	١	r us	CS
S PT	Ha	nd aug nd spa sh tuba	ade			→ Wat			H	Very Stiff VD Ver Hard Friable	ny Dense		bisture co be sampl			penetro Field den S Water sa	sity	١	l Agi	ricultural
Α	Au	ger ncrete		r		,									.,					
			_			EXCAVATION	ON L	OG TO BE READ IN CONJU	INCTION WITH	I ACCOMPANYING	REPO	ORT NOTE:	S AND A	ABBRE\	/IATIC	ONS				

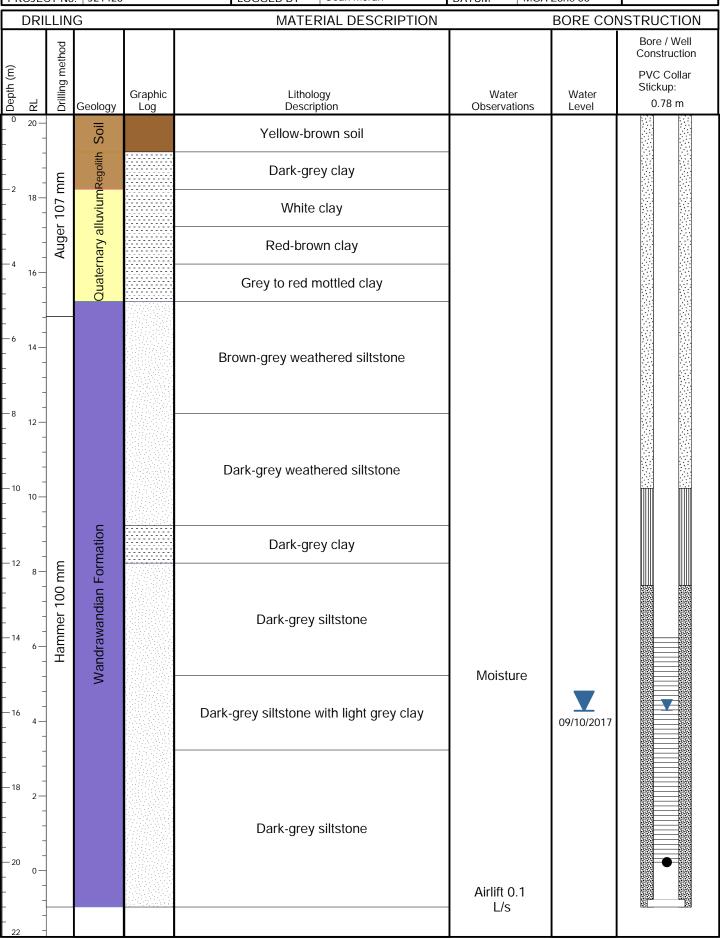
CLI			-			sociates	Pty	Lta	LOGGED	22.11.10		COMPLETE		.10			KEF		BI	12	
PR		СТ	_		ing Serv					GT		CHECKED	AN				Sheet 1				
SIT			C	ullburra		West Cu	ıllbu	rra	GEOLOGY	Siltstone		VEGETATIO	_	es			PROJECT N	NO. P1	100284	2	
EQUI			INAT N	CIONE	Hydraulic A				EASTING	NA		RL SURFAC					SLOPE		0/		
				SIONS	0.1mØ X 7	.0m depth			NORTHING	NA NT A		ASPECT	North					3-4			_
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	PENETRATION R RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIF Soil type, texture, structure, n particle characteristics, orga	PTION OF STR mottling, colour, pla anics, secondary a ontamination, odou	ATA asticity, rocks, c	oxidation, ponents,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)	MPLING	G & TES WATER			Well Cover	r
A A	Nil Nil	N N		0.1			OL	ORGANIC SILT			ck.	S		^	0.2	2842/2/0.2	C C	1		7	=
А	INII	IN	IVI	0.2			CL	SILTY CLA	Y – Brown/lig	ht brown.				Α	0.2	2842/2/0.2	2+ B			_Concrete, -0.3m bgl	_
A	Nil	N	М				CL	CLAY – Red, moderat mottles inc	tely plastic, w creassing with		own/grey	F		A	0.5	2842/2/ 0.5	5 + Att			Bentonite Seal	1 -
Α	Nil	N	М				СН	CLAY – Red, mediun	n plasticity, g	rey/brown r	mottles.	St		А	1.0	2842/2/1.0				UPVC Pipe	- 1.0
Α	Nil	N	М	1.2			СН	CLAY - Grey with	h minor red/b	rown mottle	es.	VSt		A	1.2	2842/2/1.2	2		ĮΣE		=
Α	Nil	z	О М				CEW	CLAY - EXTREMELY Clay to sandy	Y WEATHER	ED SILTS1	FONE -	VSt		A	2.0	2842/2/2.0 2842/2/2.3 2842/2/2.3	5			4.05m bglSand PackUPVC Scree	2.0
Α	Nil	N	М	- - - 6.0 - - - - 6.5			CL	SILTSTONE CLAY - highly w	Brown/dark g /eathered silts		gravels,	St		Α	6.0	2842/2/6.0))	70777777777777777777777777777777777777			6.0
А	Nil	N	w	- - - 7.0			CL EW	CLAY - Dark gr weatl	rey/brown, cla hered siltston		у	VSt		A	7.0	2842/2/7.	o	시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시	XXXX		- - 7 0
				8.0 				Borehole term	ninated at 7.0i	m on clays.									<i>y</i> °. † v	- 7:05mbgl /ell end plug.	8.0
	ALUE:	4E	/	9.0	IDDODE	1444		MOISTURE	TDATION CO.	CIOTENCY .	DENOTE		LINGS	07:::					11.000	IEIO * T: = :	9.0
N X BH E HA S PT A	Na Ex Ex Ha Ha Pus Au	tural edisting ckhoe cavato nd aug nd spands tube ger	exposu excav bucke or ger ade	ure SF ration SC et RE Nil	JPPORT I Shoring Shoringt Rock Bol No suppo	ts <u>▼</u> Wat ort 	e obse measu er leve er outf er inflo	rved D Dry L Lored M Moist M Mc, W Wet H Hig Wp Plastic limit R Re	ow VS oderate S gh F efusal St VSt H F	Very Soft \\ Soft \ L Firm \ I Stiff \ C Very Stiff \\ Hard \ Friable	DENSITY VL Very Loose Loose MD Medium D D Dense VD Very Dens	se A Au B Bu Jense U Ur D Di e M Mo Ux Tu	LING & TE ger sample lk sample idisturbed disturbed sa sisture con be sample	sample mple tent (x mm)	PP S VS DC FE W:	S Vane sheat CP Dynamic penetror D Field dens S Water sar	penetration to ar c cone meter sity	est S	Y L	IFICATION DLS AND ESCRIPTION ISCS gricultural	
)						MARTENS &	ASSOCIATE	S PTY LTD				no	vino	orin	~ I	_	~	

CLI	EN	г	Α	llen Pric	e & As	sociates	Pty	Ltd	COMMENCED	23.11.10	COMPLETE	D 2	3.11.10			REF		ВН3
PR	JE	СТ	E	ngineer	ing Ser	vices			LOGGED	GT	CHECKED	A	N			Sheet 1		_
SIT	E		С	ullburra	Road,	West Cu	ıllbu	ırra	GEOLOGY	Siltstone	VEGETATI	ON N	one			PROJECT N	o. P10	002842
EQUI	PMEI	ΝT			Hydraulic A	Auger			EASTING	NA	RL SURFA	CE N	Α					
EXC	VAT	ION D	IMEN	ISIONS	0.1mØ X 5	.5m depth			NORTHING	NA	ASPECT	N	orth			SLOPE	2-3%	6
	EX	CAV	/AT	ION DA				MA	TERIAL DA	TA				SA	MPLIN	G & TES	TING	
METHOD	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, m particle characteristics, orga	PTION OF STR. nottling, colour, pla anics, secondary a nntamination, odou	sticity, rocks, oxidation, nd minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER V 0.635m agl	VELL C	Well Cover
Α	Nil	N	М	- 0.15		×××	SM	SILTY SAND – Brov	wn/dark brow	n, minor gravels.		L	A	0.2	2842/3/0.2	2		Concrete -
Α	Nil	N	М	-0.35			SP	SAND – Light brown/	/brown, medic	ım grained sands,		L		0.2				
				-				gravels (1-	-5mm, approx	(10%).			А	0.5	2842/3/0.5	5		-
А	Nil	N	М				CL	CLAY - Yellow/bro siltstone band			F St		A	1.0	2842/3/1.0))		0.6m bgl Bentonite Seal UPVC Pipe. 1.0
Α	Nil	N	М	- - -1.25			CL/ HW	SANDY CLAY/HIGHI	LY WEATHE	RED SILTSTONE	VSt		А	1.2	2842/3/1.2	2 2)
				- 1.25		= ===		- (Orange/grey.	/	1					*		(<u>)</u>
A	Nil	N	М	1.6			CL HW	CLAY - HIGHLY W Grey with red/orange			VSt		A	1.5	2842/3/1.5	5		1.565m bgl
A	Nil	N	М	2.0 2.1			MW	CLAY - MODERATELY SILTSTONE - G			VSt		А	2.0	2842/3/2.0)))		Sand Pack. – UPVC Screen. 2.0
Α	Nil	N	D	- - - - - - - - - - - - - -			SC EW		EXTREMELY - Grey/pink/r m grained sar	ed, fine to	VSt		А	2.5	2842/3/ 2.5	5		
Α	Nil	N	D	3.2			MW	MODERATELY W	VEATHERED	SILTSTONE -						- j		23.0 -
А	Nil	N	D	-			HW/ EW		range brown.						00.4004.4			
А	Nil	N	D				MW/ SW			/EATHERED				4.0		4 <u>.565</u> m <u>bgl</u>		Well end plug.
А	Nil	N	D				EW/ MW			WEATHERED								
A NII N D SILTSTONE. A NII N D SILTSTONE. EXTREMELY/MODERATELYWEATHERED SILTSTONE. Borehole terminated at 5.5m on moderately weathered siltstone. Borehole terminated at 5.5m on moderately weathered siltstone. G.0 T.0 T.0 T.0 T.0 T.0 T.0 T.																		
N X BH E HA S PT A	Na Ex Ex Ha Ha Au	atural e	exposi excar bucke or ger ade e	THOD SL ure SH vation SC et RE Nil	H Shoring C Shotcrete Rock Bol No suppo	N None x Not its y Wate out ✓ Wate	e obse measu er leve er outf er inflo	rived D Dry L Lovered M Moist M Lovered M Moist M Mel H Highway Plastic limit R Rel	w VS oderate S of Fifusal St S VSt H I	Very Soft VL Very Loo Soft L Loose Firm MD Medium L Bitff D Dense Very Stiff VD Very Dense Hard Hard Hard	se A A B B Dense U U D D Se M M Ux Tr	uger sa ulk sam ndistur isturbe oisture ube sar	ample apple bed sample d sample content mple (x mm)	PF S VS D(FE W	Standard S Vane sheat CP Dynamic penetror D Field dens S Water san	penetration te ar c cone meter sity	S١	ASSIFICATION YMBOLS AND DIL DESCRIPTION USCS
					E	EXCAVATION	ON LO	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING REP	ORT NOTE	S ANI	D ABBRE	VIATIO	ONS			
l			-									- 1			_			

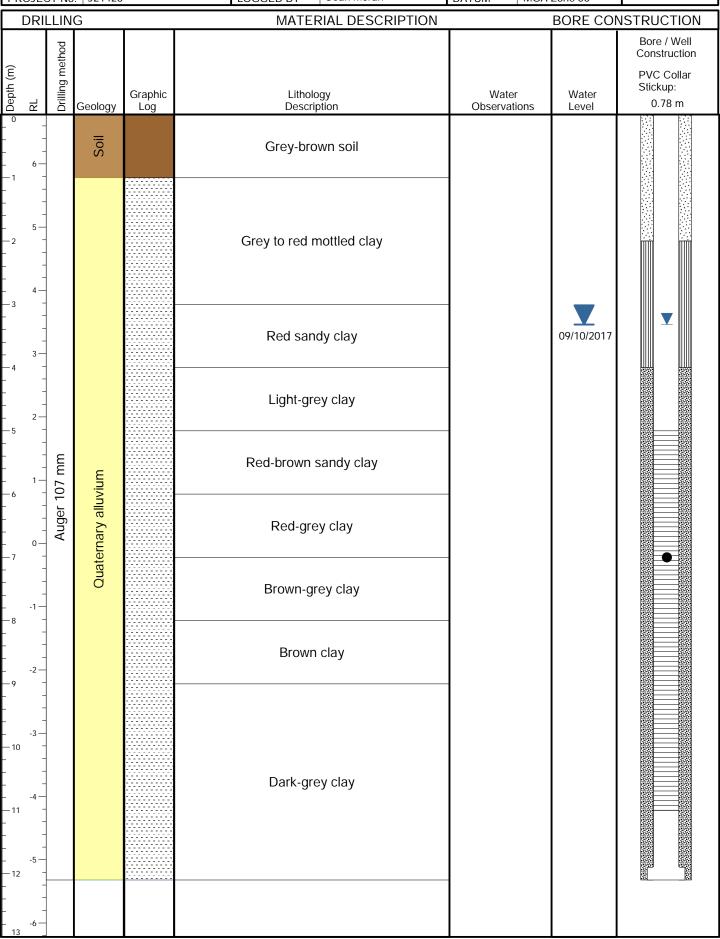
CL	IEN	Г	A	llen Pri	ce & As	sociates	Pty	Ltd	COMMENCED	23.11.10	COMPLET	ED	23.11.10			REF	E	3H4
PR	OJE	СТ	E	ngineer	ing Ser	vices			LOGGED	GT	CHECKED		AN			Sheet 1		
SIT			С	ullburra		West Cu	Ilbu	rra	GEOLOGY	Siltstone	VEGETAT	-	None			PROJECT	NO . P100	12842
_	IPMEI				Hydraulic /				EASTING	NA	RL SURFA		NA			0.005		
EXC				ISIONS	0.1mØ X 5	5.5m depth		NA A	NORTHING	NA	ASPECT		North		AMDI IN	SLOPE	2-3%	
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH (M)	PENETRATION	GRAPHIC LOG	CLASSIFICATION	DESCRII Soil type, texture, structure, reparticle characteristics, orga	PTION OF STR	ATA asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	, L	Ę			WELL DI	ETAILS Well Cover
ŀ				-	_ ≥ ± ∝	5		CILTY CAND. Decore		0 100/	8).2		Concrete
A	Nil	N N	M	0.3		× × ×	SM	SILTY SAND – Brown CLAY - Brown/orange	e, mottles inci	reasing with depth,	S							-
А	Nil	N	М	1.0			CL	gravels (1-	10mm, appro			F	: ,	1.0	2842/4/1	1.0		0.6m bgl Bentonite Seal UPVC Pipe. 1.0
Α	Nil	N	М	 _ _ _ _ _ _ _			CL HW	CLAY - HIGHLY W Grey with red/orange			VSt		,	1.5	2842/4/1	1.5		4.26m bgl
А	Nil	N	М	2.0			CL MW EW	CLAY - MODERATELY SILTSTONE - 0			VSt		4					2 <u>0</u>
А	Nil	N	D	3.0 			SC EW	CLAYEY SAND/E SILTSTONE - G mediur		orange, fine to	VSt		E	3 4.00	2842/4/4	l.0 4 <u>.26</u> mbgl		4.0
А	Nil	N	D	5.0 - - - - - - - -			EW/ MW	EXTREMELY/MC SILTSTONE					4	5.0	2842/4/5	5.0		
								extremely/mode		red siltstone.						1	102,733	5
N B E H S P A	Na Ex H Ba Ex A Ha Ha T Pus	itural e kisting ckhoe cavate nd au ind sp sh tub ger	expos exca buck or ger ade e	THOD SI ure SI vation So et RI Ni	JPPORT H Shoring C Shotcrete B Rock Bo	lts 🅎 Wat	e obse neasu er leve	rved D Dry L Lo red M Moist M M i W Wet H Hig Wp Plastic limit R Re low WI Liquid limit	w VS oderate S gh F ifusal St VSt H	SISTENCY	ose A A Dense U U D E Se M N	luger s Bulk sa Indistu Disturb Toistur	& TESTI sample mple urbed sam ed sample e content ample (x m	ole \ (im) F	S Standard /S Vane sh DCP Dynan	nic cone ometer nsity	SYI	ASSIFICATION MBOLS AND L DESCRIPTION USCS Agricultural
С	C Coi	ncrete	Core	r	1	EXCAVATION	ONI	OG TO BE READ IN CONJU	INCTION WITH	I ACCOMPANYING REP	ORT NOTE	S AN	ID ABBE	EVIAT	IONS			
\vdash			_							ASSOCIATES BTV LTD		Ť			•			

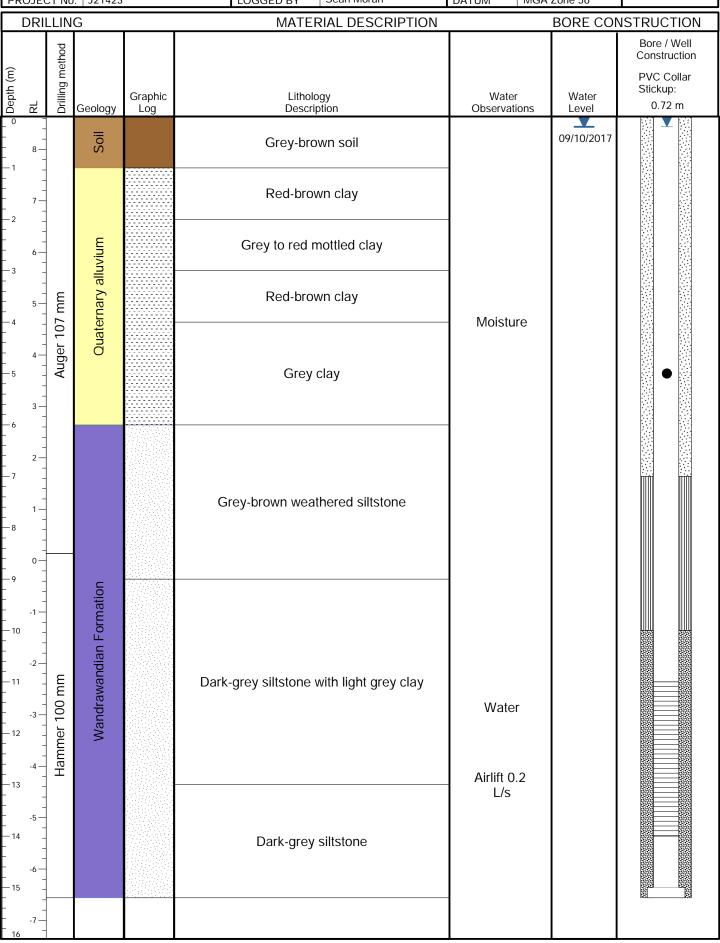

CL	IEN	Γ	Α	llen Pri	ce & As	sociates	Pty	Ltd	COMMENCED	24.11.10	COMPLETE	ED	24.11.10			REF		BH5	
PR	OJE	СТ	E	ngineer	ing Ser	vices			LOGGED	JSF	CHECKED		GT			Sheet 1			
SIT	Έ		С	ullburra	a Road,	West Cu	llbu	rra	GEOLOGY	Siltstone	VEGETATI	ON	Eucalypts			PROJECT I	NO. P10	02842	
_	IPMEI				Hydraulic A				EASTING	NA	RL SURFAC		NA						
EXC				ISIONS	_	5.5m depth			NORTHING	NA	ASPECT		North		A NA DILIA	SLOPE	5%		_
┝	EX	CAV	/AT	ION DA			-	M <i>A</i>	TERIAL DA	ATA				S	AMPLIN	IG & TES	TING		_
МЕТНОВ	SUPPORT	WATER	MOISTURE	DEPTH(M)	L PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	Soil type, texture, structure, r particle characteristics, orga	PTION OF STR nottling, colour, planics, secondary a intamination, odou	asticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER 0.54m agl	WELL D	ETAILS Well Cover	
А	Nil	N	М	0.3		× × × × × ×	OL	ORGANIC SA	NDY SILT – I	Dark brown.	S		А	0.2	2842/5/0).2	T - 1	Concrete	_
А	Nil	N	М	1.0			CL	CLAY - Orange/bro tending grey with mino	own mottles, f r brown and	irm grading stiff, red mottles at depth.	F- St		A	1.0				Bentonite Seal 1.0m bgl UPVC Pipe.	1.0
А	Nil	N	D	1.7 			EW	EXTREMELY W Orange	EATHERED /grey mottled				A	1.5	2842/5/1			1.68mbgl Sand Pack.	2.0
A	Nil	N	D				MW	MODERATELY W Orange	/EATHERED /grey mottled				A	2.5	2842/5/2	2.5		_UPVC Screen.	3.0
А	Nil	N	D				EW	EXTREMELY W Orange	EATHERED /grey mottled										4.0
А	Nil	N	D	-			sw	SLIGHTLY WE	ATHERED S	SILTSTONE.						ļ		4.	-
А	Nil	N	D	4.3 - - - - - 5.0 - - - - - - - - - - - - - - - - - - -			MW	MODERATELY WEATHERE					В	5.5	2842/5/5	4.68m bgl		Well end plug.	5.0
E	QUIP	иелт	/ ME		JPPORT	WATER		moderately	erminated at v weathered s		SAME	PLING	S & TESTIN	90			CL		6.0
N B E H S P A	Na Ex H Ba Ex A Ha Ha T Pu	atural existing ckhoe cavate and au and sp sh tub iger	expos exca buck or ger ade e	ure Sh vation S0 et RI Ni	JPPORT H Shoring C Shotcrete B Rock Bol I No suppo	N None ≥ X Not r ts ∇ Wate	e obse neasu er leve er outf	rved D Dry L Lo red M Moist M Mi I W Wet H Hi Wp Plastic limit R Re low WI Liquid limit	w VS oderate S gh F fusal St VSt H	DENSITY	ose A A B B Dense U U D D se M M	uger s ulk sa ndistu isturb oistur	sample	e V	Standard S Vane sh OCP Dynan	nic cone ometer nsity	SY	ASSIFICATION MBOLS AND IL DESCRIPTION USCS Agricultural	1
۳	U U0	in ete	COLE		F	EXCAVATION	ON LO	OG TO BE READ IN CONJU	INCTION WITH	H ACCOMPANYING REP	ORT NOTE	S AN	ID ABBRI	VIATI	IONS				_
Г			7							ASSOCIATES BTV LTD		Ť	(•				_

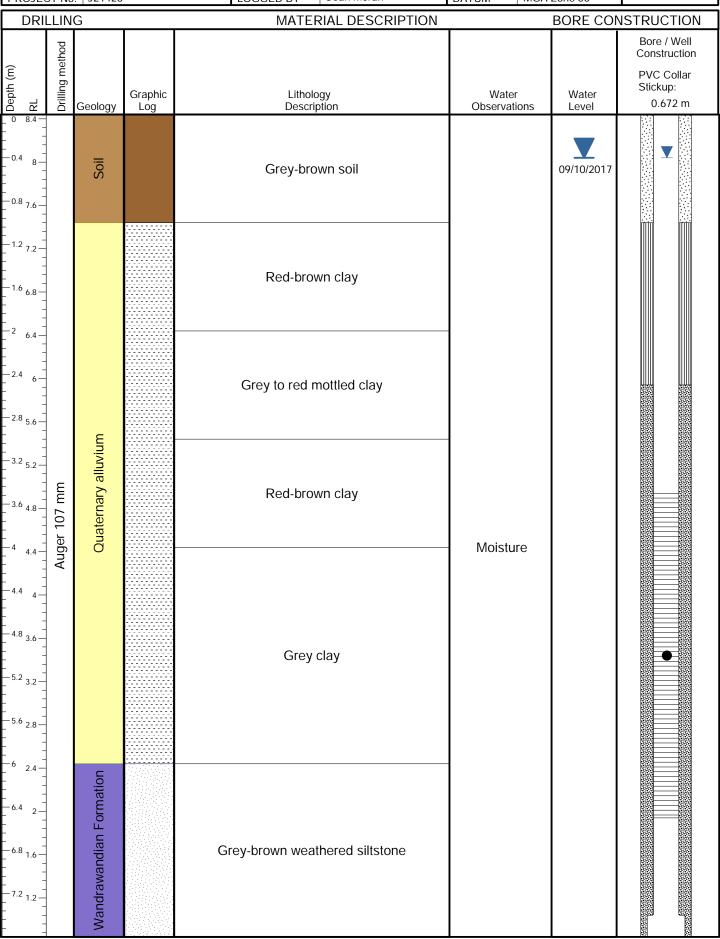
	EIN		_			sociates	Гιу	Lta	LOGGED	23.11.10	COMPLETEL	_	-			KEF			H6
PR		СТ	_		ing Ser					GT	CHECKED	AN				Sheet 1	of 1		
SIT			C	ullburra		West Cu	ıllbu	rra	GEOLOGY	Siltstone	VEGETATIO					PROJECT N	o . P1	00284	12
EQUI			NAC N	SIONS	Hydraulic A				EASTING	NA	RL SURFACE				I.	SLOPE	4.00	.,	
				ON DA	0.1mØ X 5	.5m depth		MA	NORTHING	NA TA	ASPECT	North		64		G & TES	1-29	%	
МЕТНОБ	SUPPORT	WATER	MOISTURE	DEPTH(M)	M PENETRATION H RESISTANCE	GRAPHIC LOG	CLASSIFICATION	DESCRIF Soil type, texture, structure, re particle characteristics, orga	PTION OF STR	ATA sticity, rocks, oxidation, and minor components,	CONSISTENCY	DENSITY INDEX	TYPE	DEPTH(M)		WATER V		DET/	AILS Well Cover
Α	Nil	N	М	0.1			CL	SILTY SANDY	CLAY – Dark	grev/brown.	S					्र	-		Concrete
Α	Nil	N	м	-			CL	SILTY SAND C			s		Α	0.2	2842/6/0.	2			
				- 0.45									Α	0.5	2842/6/0.	5		% _	-0.5m bgl
A	Nil	N	М	0.7			CL	CLAY - Red/orange wi with depth, minor g			St								_Bentonite Seal
А	Nil	N	М	1.0 - 1.3	000 000 000 000 000 000 000 000 000 00		СН	CLAY - Grey/cream wit plastic, gravel:			St		Α	1.0	2842/6/1.	0] • (UPVC Pipe. 1 <u>.(</u>
													Α	1.5	2842/6/1.	5 /			Sand Pack.
Α	Nil	N	М				CL HW	CLAY - HIGHLY W Light grey with red m increa		ne gravels bands	VSt		Α	2.0	2842/6/2.	0	/ / / / = =		2 <u>.(</u> 2.33mbgl
				_ _ _ _ 									Α	2.5	2842/6/2.	5			UPVC Screen.
A A	Nil	N N	M D	3.0 3.1			CL MW		ODERATELY - Light brown m, approx 15	n, gravels	VSt		В	3.0	2842/6/3.	o (1)		8 8	3 <u>.(</u>
A	INII	IN	D	3.3			HW	CLAY/HIGHLY WEATH		· · · · · · · · · · · · · · · · · · ·	VSt						ΞΞ	_	
				 _ _ _ 				CLAT/HIGHLT WEATE	TERED SILT	STONE - Light gley,/			Α	3.5	2842/6/3.	5			4 <u>.(</u>
А	Nil	N	w	- - - - - - - - - - - - - - -			CL EW	CLAY - EXTREMEL\ Dark brown/dark g			VSt		В	4.5	2842/6/4.	5 5 8 8 8 8			5 <u>.</u> 6
				_ _ _ 									Α	5.5	2842/6/5.	<u>5.33</u> m <u>bgl</u>		y	Vell end plug.
									erminated at t weathered si										6 <u>.(</u>
				- - - -															
				- - <u>7.0</u>															7 <u>.(</u>
				- - -															
				_ _ _ _															
				8.0 - -															8 <u>.(</u>
				<u>-</u> -															
				_ _ _ 9.0															
N X BH E H/ S P1 A	Na Ex Ex A Ha Ha F Pu	itural e kisting ckhoe cavate nd aug ind spa sh tube ger	exposu excav bucke or ger ade	FHOD SU re SH ration SC et RE Ni	JPPORT H Shoring C Shotcrete B Rock Bol I No suppo	ts 🅎 Wat	e obse measu er leve er outf	New New	w VS oderate S gh F fusal St VSt H	SISTENCY	Dense A Aug B Bull Dense U Und D Disi se M Moi	ING & TE er sample sample listurbed s surbed san sture contr e sample	ample nple ent	pp S VS DC	Pocket pe Standard S Vane she CP Dynami penetro D Field dens S Water sai	penetration te ar c cone meter sity	st S	YMB(OIL D	9.0 SIFICATION DLS AND ESCRIPTION USCS Agricultural
					E	EXCAVATION	ON LO	OG TO BE READ IN CONJU	INCTION WITH	ACCOMPANYING REP	ORT NOTES	AND AE	BBREV	/IATIC	ONS				
									MARTENIO	ACCOCIATEC DTV I TD		1	_			-			


CLIENT	Shoalhaven City Council	COMPLETED	18/09/2017	EASTING	293809.642	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6130823.531	MB401A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.43 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

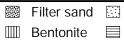
PROJ	ECTNO): J21423		LOGGED BY Stuart Brown	DATUM	MGA Zone 56	Sheet 1 01 1
DR	RILLIN	G		MATERIAL DESCRIPTION		BORE CO	NSTRUCTION
Depth (m) RL	Drilling method	Geology	Graphic Log	Lithology Description	Water Observati	Water ons Level	Bore / Well Construction PVC Collar Stickup: 0.652 m
0 2		Coolingy		Yellow-brown to grey silty clay		2576.	
- - - - 2 - 0		Quaternary alluvium		Grey silty clay, stiff	_	09/10/2017	▼
-	107 n	nary a		Grey to red-brown silty clay	NA = i = to	_	
4 2 -	Auger 107 mm	Juaterr		red-brown silty clay	- Moistur	re	
- - 6 4	- - - -	0		white to yellow-brown clay	Wet		•
- - 8	-			grey to yellow-brown weathered siltstone			
6 -	_			grey-brown slightly weathered siltstone			
- 10 - 8 - 10 - 11 - 11 - 11 - 11 - 11 -	Hammer 100 mm	Wandrawandian Formation		dark-grey carbonaceous siltstone			


CLIENT	Shoalhaven City Council	COMPLETED	18/09/2017	EASTING	293798.311	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6130832.264	MB401B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.63 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1


CLIENT	Shoalhaven City Council	COMPLETED	15/09/2017	EASTING	293378.915	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131052.137	MB402A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	20.23 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1


CLIENT	Shoalhaven City Council	COMPLETED	15/09/2017	EASTING	293188.808	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6130843.024	
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	6.78 mAHD	MB402B
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

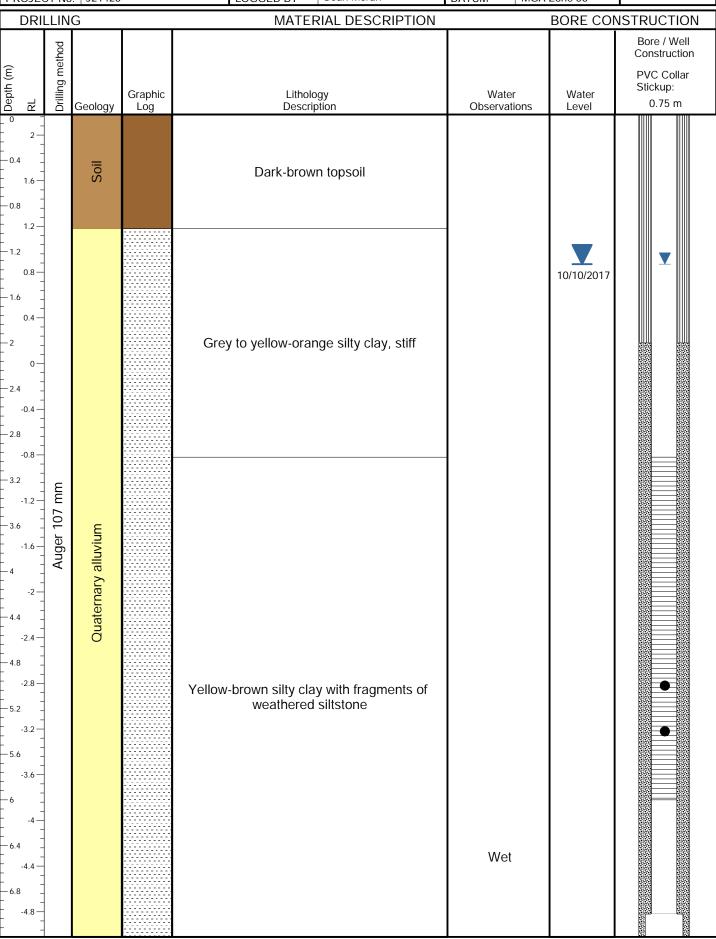
CLIENT	Shoalhaven City Council	COMPLETED	15/09/2017	EASTING	292224.367	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132450.366	MB403A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	8.64 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1



CLIENT	Shoalhaven City Council	COMPLETED	15/09/2017	EASTING	292219.787	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132449.549	MB403B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	8.44 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

CLIENT	Shoalhaven City Council	COMPLETED	14/09/2017	EASTING	292401.078	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131914.318	MB404
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	35.15 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

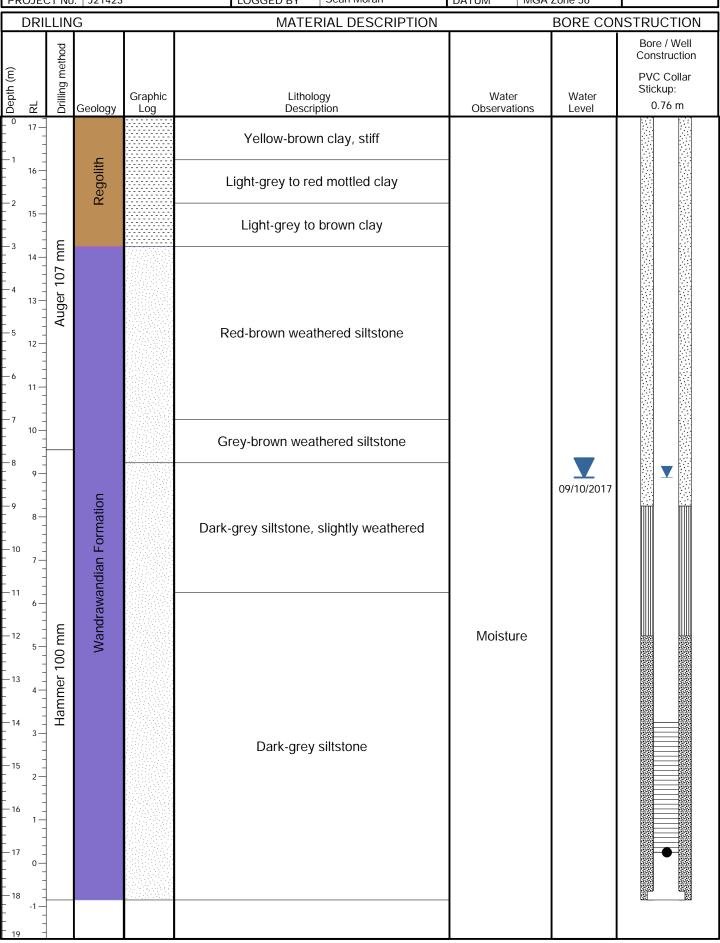
PROJECT No: J	21423	LOGGED BY Sean Moran	DATUM MGA	Zone 56	Sheet 1 of 1
DRILLING		MATERIAL DESCRIPTION		BORE CO	NSTRUCTION
Depth (m) RL Drilling method	Graph blogy Log	C Lithology Description	Water Observations	Water Level	Bore / Well Construction PVC Collar Stickup: 0.95 m
		Brown topsoil	Observations	Level	
4 dager 107	Ouaternary alluvium Soi	light-grey clay		09/10/2017	_
- 28 8		Grey-brown weathered siltstone			
26		Dark-grey-brown weathered siltstone			
		Dark-grey-brown weathered siltstone with light grey clay	Moisture		
- 24 — - 12 –		Dark-grey-brown weathered siltstone	. Wolstard		
 22 14 -		Grey-brown weathered siltstone			
 20 - 16 -	Wandrawandian Formation	Dark-grey siltstone	Airlift 0.3 L/s		
- 10 <i>-</i> 		Dark-grey siltstone with angular quartz			
26 - 		fragments Dark-grey siltstone; minor light grey siltstone			
- 8 - - 28 -		Dark-grey siltstone; minor light grey clay			
- 6		Dark-grey siltstone			
2—		Dark-grey siltstone; minor light grey siltstone			
34					



CLIENT	Shoalhaven City Council	COMPLETED	13/09/2017	EASTING	294797.948	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131618.639	MB405A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.07 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

FIX	ROJECT No: J21423 LOGGED BY Sean Moran				LOGGED BY Sear Morali	DATUM	IVIGA	Zone 56	Sheet 1 01 1
	DRI	LLIN	G		MATERIAL DESCRIPTION	_		BORE CO	NSTRUCTION
Depth (m)	RL	Drilling method	Geology	Graphic Log	Lithology Description	Water Observati		Water Level	Bore / Well Construction PVC Collar Stickup: 0.81 m
_ 0 _	2-		Soil	Log		Obsci vali	10113	Ecvei	(20) (20) (30) (40)
-1 -1 -2 -2 -3	1				Dark-brown topsoil Grey to yellow-orange silty clay, stiff	-		10/10/2017	▼
- 4 - 4 - 5 - 5 6	-2 — -3 — -4 —	Anger 107 mm Auger			Yellow-brown silty clay with fragments of weathered siltstone	Wet			•
- / - - - - 8 - -	-5 — - - -6 — -				Grey-brown weathered siltstone				
- - - 13 - - -	-7 — -8 — -9 — -10 — -11 —	Core / Hammer 100 mm	Wandrawandian Formation		Dark-grey siltstone; Diffuse mm to cm-bedding with extensive bioturbation				
— 14 - -	-12 — -	MLC (wanc		Fault zone Dark-grey siltstone				
_ _ — 15	-13 —	2	ndra		Fault gauge, white clay				
E	-14 —		War		Dark-grey siltstone; Crinoid fossils; mostly stem fragments				
- - - 18 - - - - - 19 -	-15 — -16 — -17 — -18 —	Hammer 100 mm			Dark-grey siltstone				
- 21			<u> </u>						

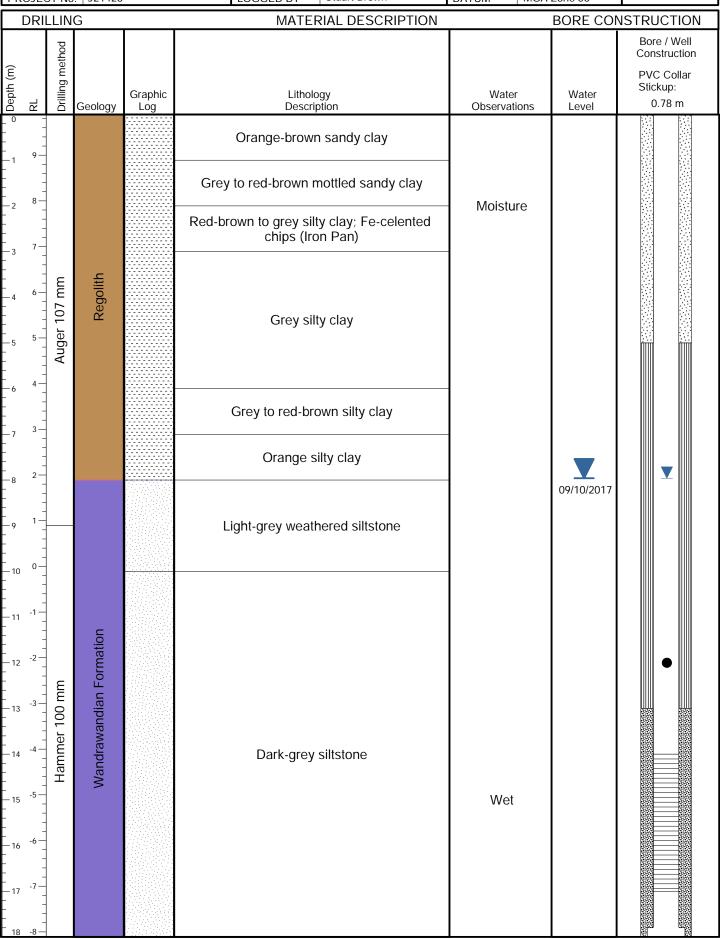
CLIENT	Shoalhaven City Council	COMPLETED	13/09/2017	EASTING	294793.08	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131616.889	MB405B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.18 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

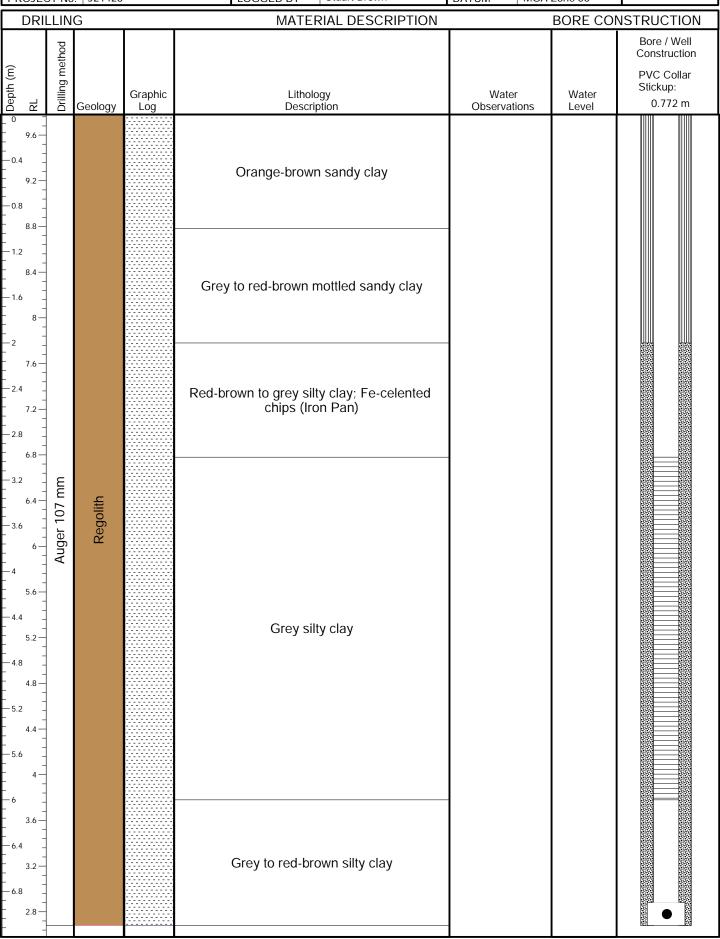

Cuttings

Screen

CLIENT	Shoalhaven City Council	COMPLETED	11/09/2017	EASTING	293964.524	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131638.411	
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	22.87 mAHD	MB406
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

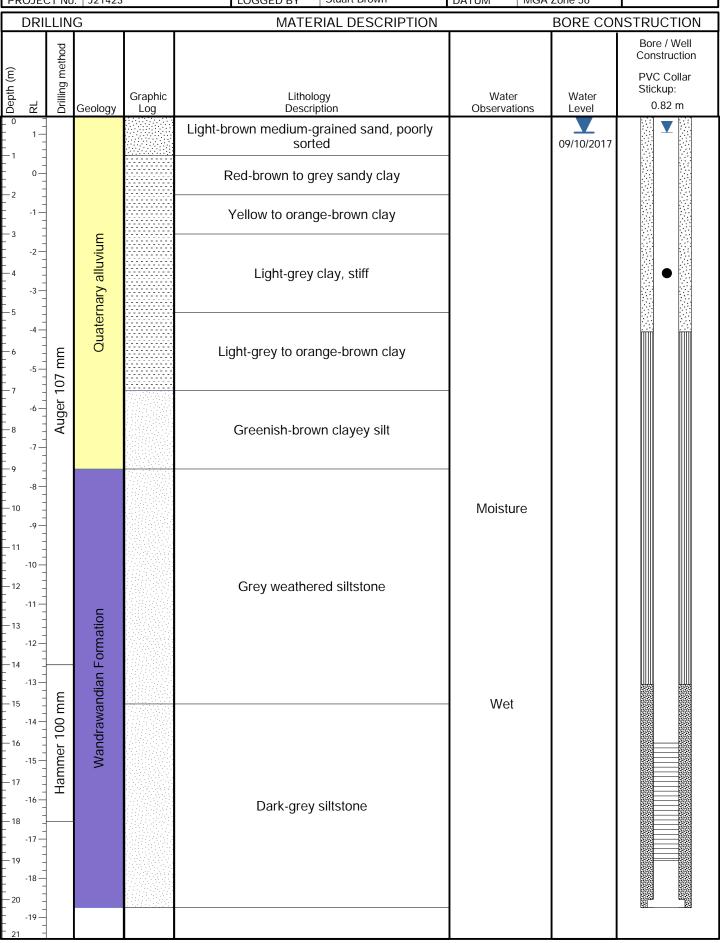
PROJECT No: J21423				LOGGED BY Stuart Brown	DATUM M	GA Zone 56	Sheet 1 01 1
DRI	LLIN	G		MATERIAL DESCRIPTION		BORE CO	NSTRUCTION
Depth (m) RL	Drilling method	Geology	Graphic Log	Lithology Description	Water Observations	Water Level	Bore / Well Construction PVC Collar Stickup: 0.73 m
0	107		9	Light-grey mottled clay, stiff			
- 22 20	Auger 1	Regolith		Light-grey mothed day, still			
18	-			Light yellow-brown weathered siltstone			
-				Grey siltstone			
	Hammer 100 mm	Wandrawandian Formation		Light-grey siltstone Dark-grey siltstone	Wet	09/10/2017	


CLIENT	Shoalhaven City Council	COMPLETED	14/09/2017	EASTING	293867.317	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132201.957	MB407A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	17.25 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

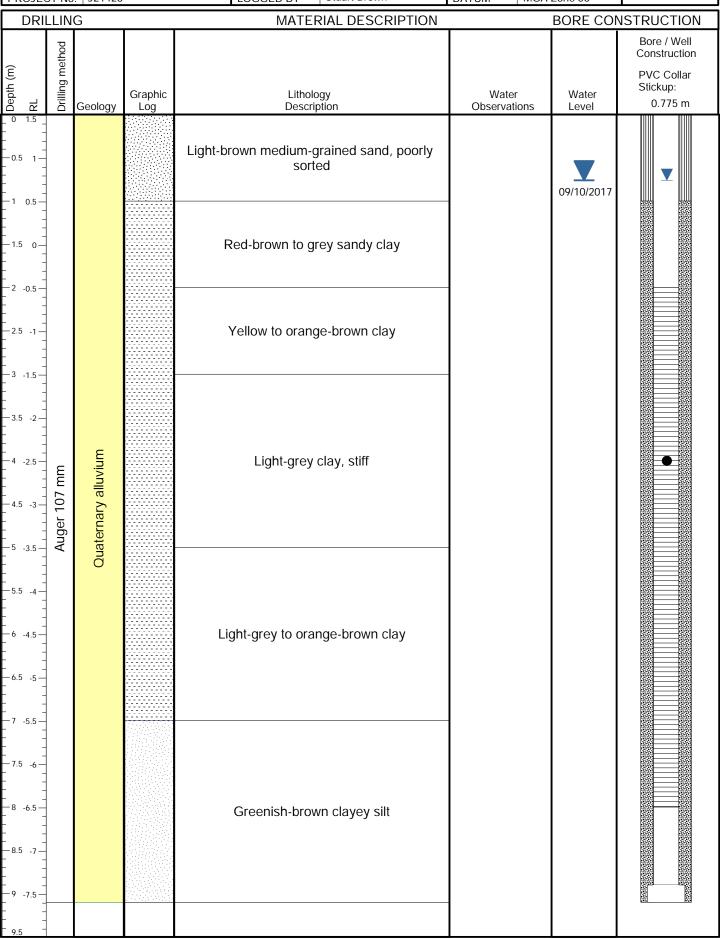

CLIENT	Shoalhaven City Council	COMPLETED	14/09/2017	EASTING	293867.712	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132196.839	MB407B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	17.12 mAHD	
PROJECT No:	J21423	LOGGED BY	Sean Moran	DATUM	MGA Zone 56	Sheet 1 of 1

PROJE	PROJECT No: J21423		LOGGED BY S	LOGGED BY Sean Moran		DATUM MGA Zone 56		Sheet 1 01 1	
DRI	LLIN	G		MATERIA	L DESCRIPTION			BORE CON	ISTRUCTION
Depth (m) RL	Drilling method	Geology	Graphic Log	Lithology Descriptio	n	Water Observatior	ns	Water Level	Bore / Well Construction PVC Collar Stickup: 0.75 m
_ 0			<u> </u>	Yellow-brown c	ilay, stiff				
- 15.6 15.6 14.8 14.4 14.4 14.8 14.4 12.8 14.4 12.8 14.4 14		Regolith		Light-grey to red n					
- 14 3.2 13.6 13.2 13.2 12.4 12.4 12.4 11.6	Auger 107 mm	Wandrawandian Formation		Red-brown weather	red siltstone				

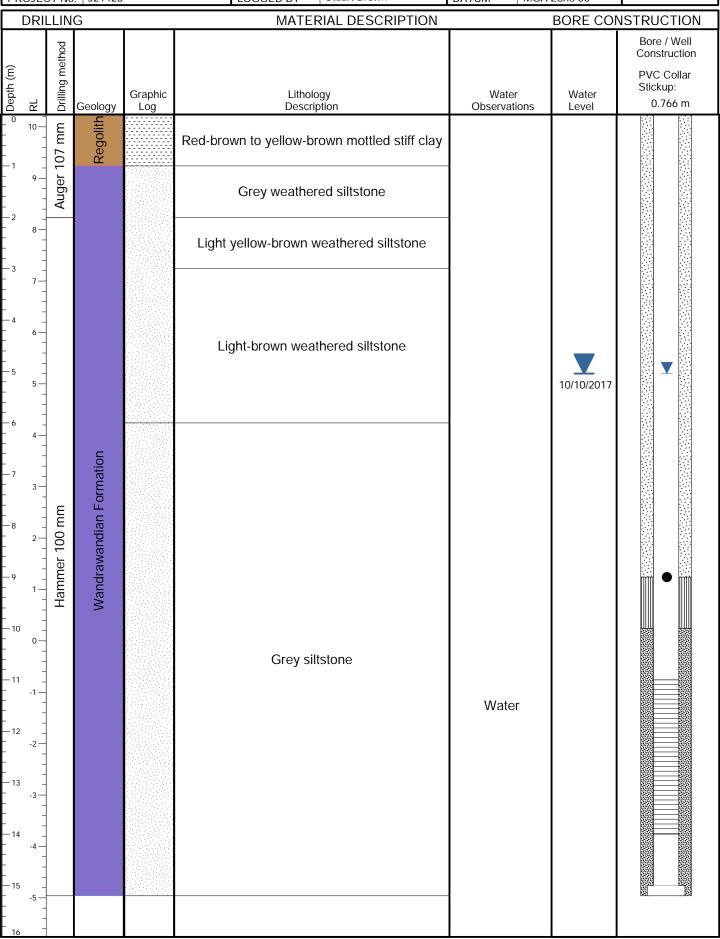
CLIENT	Shoalhaven City Council	COMPLETED	19/09/2017	EASTING	293644.181	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132748.991	MB408A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	9.89 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1


CLIENT	Shoalhaven City Council	COMPLETED	19/09/2017	EASTING	293641.124	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132749.516	
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	9.78 mAHD	MB408B
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

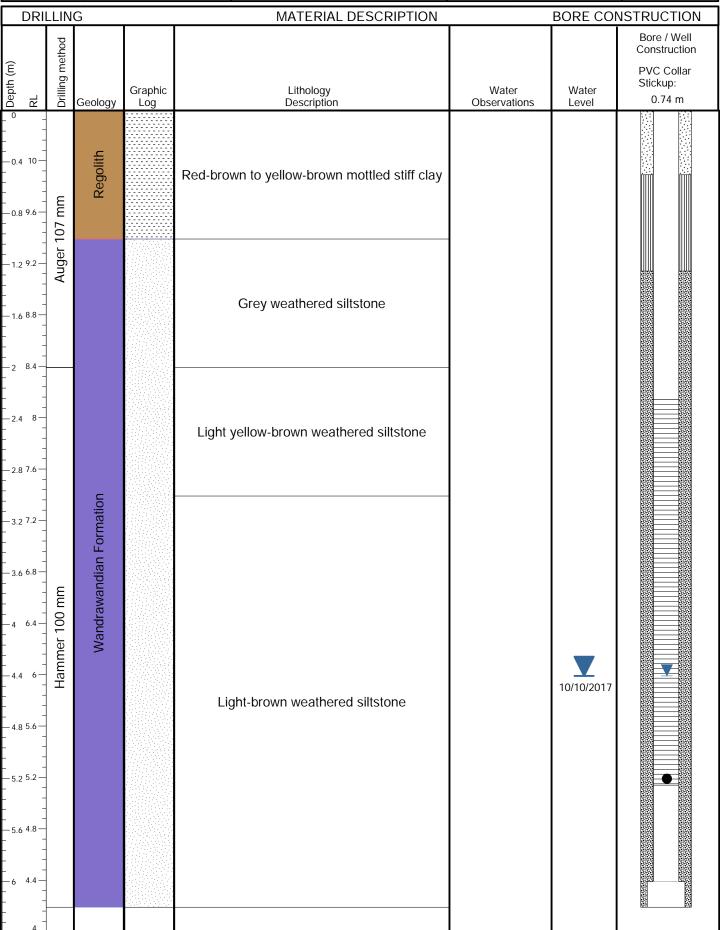
CLIENT	Shoalhaven City Council	COMPLETED	18/09/2017	EASTING	293189.878	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131411.672	
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	13.58 mAHD	MB409
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

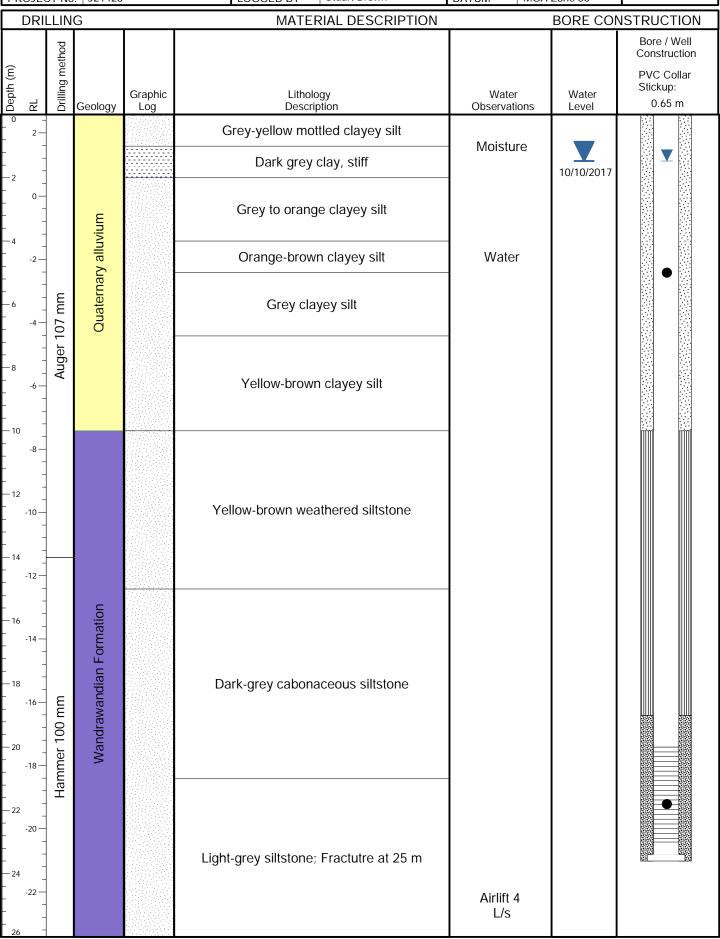

PROJE	PROJECT No: J21423 LOGGED BY Stuart Brown					Stuart Brown	DATUM	MGA	Zone 56	Sneet For F
DR	DRILLING MATERIAL DESCRIPTION								BORE COI	NSTRUCTION
Depth (m) RL	Drilling method	Geology	Graphic Log		Lithol Descri	ogy iption	Wate Observa	er tions	Water Level	Bore / Well Construction PVC Collar Stickup: 0.8 m
_ 0 _ 13 13 12 2 _	Auger 107 mm	Regolith		Light rec	Yellow-red	d silty clay clay, stiff ay; Fe-celented chips Pan) silty clay				
- 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	Hammer 100 mm	Wandrawandian Formation		Gı	Grey-brown weathered siltstone Grey siltstone			er	09/10/2017	

CLIENT	Shoalhaven City Council	COMPLETED	19/09/2017	EASTING	294877.932	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132562.696	MB410A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	1.45 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1



Bentonite


CLIENT	Shoalhaven City Council	COMPLETED	19/09/2017	EASTING	294878.721	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132560.475	
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	1.51 mAHD	MB410B
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1


CLIENT	Shoalhaven City Council	COMPLETED	11/09/2017	EASTING	294644.294	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132097.83	MB411A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	10.24 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

CLIENT	Shoalhaven City Council	COMPLETED	11/09/2017	EASTING	294647.574	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6132101.671	MB411B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	10.39 mAHD	
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

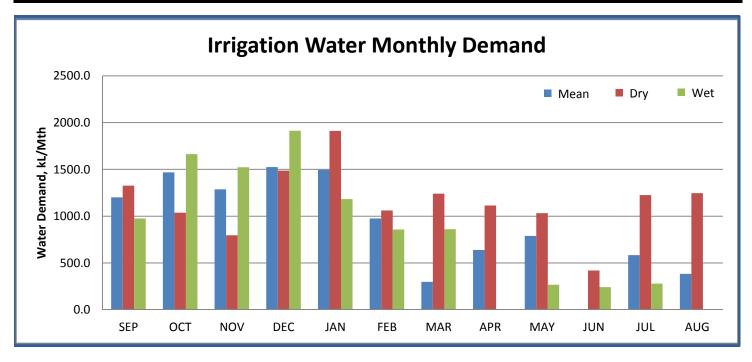
CLIENT	Shoalhaven City Council	COMPLETED	12/09/2017	EASTING	294573.847	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131776.954	MB412A
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.58 mAHD	_
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

CLIENT	Shoalhaven City Council	COMPLETED	12/09/2017	EASTING	294571.026	Borehole No:
PROJECT	West Culburra Groundwater	DRILLING Co	Highland Drilling	NORTHING	6131776.231	MB412B
LOCATION	West Culburra, NSW	RIG / METHOD	Hanjin D&B D8 TM	GRND RL	2.54 mAHD	_
PROJECT No:	J21423	LOGGED BY	Stuart Brown	DATUM	MGA Zone 56	Sheet 1 of 1

PROJ	ECT N	o: J21423		LOGGED BY Stuart Brown	DATUM MGA	A Zone 56	Sheet 1 of 1
DF	RILLIN	IG		MATERIAL DESCRIPTION		BORE COI	NSTRUCTION
Depth (m)	Drilling method		Graphic	Lithology Description	Water	Water	Bore / Well Construction PVC Collar Stickup:
Del		Geology	Log	Description	Observations	Level	0.85 m
-	- - ! — - -			Grey-yellow mottled clayey silt	- Moisture		
- - _ 1 - -2	- - - - -			Dark grey clay, stiff		10/10/2017	.
- - - -3 - - -				Grey to orange clayey silt			
-4 - ² - -5	- - !	Quaternary alluvium		Orange-brown clayey silt	Water		
- - 3 - 6 - 4	Auger 107 mm	Quaterna		Grey clayey silt			
6 7 7	- - - - - - - -			Yellow-brown clayey silt			
— 10 - - 8 - - 11 - 9 - 12	- - -	Wandrawandian Formation		Yellow-brown weathered siltstone			

16 Annexure F: Shoalhaven Council Irrigation Data

Irrigation Water Demand


Project:	Ray Abood	Oval							ID	4
Plant	Irrigated		Scale Factors Effective Ra							ctors
Type	Area, Ha	Kv	Kd	Kmc	Ksm	Ksys	Sep-Nov	Dec-Feb	Mar-May	Jun-Aug
Turf	1.250	0.90	1.00	1.00	1.00	0.85	0.45	0.40	0.45	0.50

Weather Station: Norwa Ran Air Station

Mean years: 10 Years (2010~2019); Dry year 2018; Wet Year 2015

Kv=Species Factor; Kd=Density Factor; Kmc=Microclimate Factor; Ksm=Managed Stress Factor	or; Ksys=System Efficiency
--	----------------------------

·												,,			
Month		SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	То	tal
Monthly Evapotranspiration (ET0).	Mean	113.4	137.7	140.1	155.3	152.2	115.4	105.9	85.9	79.3	54.8	74.8	89.9	1305	mm/yr
	Dry	113.8	116.9	147.6	151.7	175.2	135.4	119.8	102.9	88.8	58.2	96.3	107.4	1414	mm/yr
	Wet	97.1	143.8	142.7	165.5	146.9	77.0	104.9	72.4	79.6	49.3	63.5	80.1	1223	mm/yr
	Mean	45.3	53.6	85.8	90.1	88.3	94.0	166.7	75.3	39.3	148.6	55.2	109.8	1052	mm/yr
Monthly Rainfall, mm	Dry	27.2	77.2	175.0	88.6	69.2	124.2	52.2	37.4	21.8	47.6	6.8	24.0	751	mm/yr
	Wet	46.8	36.2	55.4	47.2	129.4	27.6	79.8	233.6	118.8	56.0	76.4	431.6	1339	mm/yr
	Mean	20.4	24.1	38.6	36.0	35.3	37.6	75.0	33.9	17.7	74.3	27.6	54.9	475	mm/yr
Effective Rainfall, mm	Dry	12.2	34.7	78.8	35.4	27.7	49.7	23.5	16.8	9.8	23.8	3.4	12.0	328	mm/yr
	Wet	21.1	16.3	24.9	18.9	51.8	11.0	35.9	105.1	53.5	28.0	38.2	215.8	620	mm/yr
Landscape Coefficient KL=Kv*Kd*Kmc*Ksm		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90		
Target ET-L, mm	Mean	102.1	123.9	126.1	139.7	137.0	103.9	95.3	77.3	71.4	49.3	67.3	80.9	1174	mm/yr
	Dry	102.4	105.2	132.8	136.5	157.7	121.9	107.8	92.6	79.9	52.4	86.7	96.7	1273	mm/yr
	Wet	87.4	129.4	128.4	149.0	132.2	69.3	94.4	65.2	71.6	44.4	57.2	72.1	1101	mm/yr
	Mean	81.7	99.8	87.5	103.7	101.7	66.3	20.3	43.4	53.7	0.0	39.7	26.0	724	mm/yr
Net Water Required, mm	Dry	90.2	70.5	54.1	101.1	130.0	72.2	84.3	75.8	70.1	28.6	83.3	84.7	945	mm/yr
	Wet	66.3	113.1	103.5	130.1	80.5	58.3	58.5	0.0	18.2	16.4	19.0	0.0	664	mm/yr
5	Mean	96.1	117.4	102.9	122.0	119.7	78.0	23.9	51.1	63.1	0.0	46.7	30.6	851	mm/yr
Estimated Irrigation Water Required, mm	Dry	106.1	82.9	63.6	118.9	152.9	84.9	99.2	89.2	82.5	33.6	98.0	99.6	1111	mm/yr
111111	Wet	78.0	133.1	121.8	153.0	94.6	68.5	68.8	0.0	21.4	19.3	22.3	0.0	781	mm/yr
Estimated Indication Mateu Demoired	Mean	1201.2	1467.9	1286.2	1525.1	1495.8	974.7	298.2	638.7	789.1	0.0	583.8	382.8	10.644	ML/yr
Estimated Irrigation Water Required, kL/mth	Dry	1326.2	1036.3	795.4	1486.6	1911.8	1061.5	1240.1	1114.4	1031.0	420.3	1224.6	1245.0	13.893	ML/yr
	Wet	975.4	1663.7	1522.1	1912.8	1183.1	856.8	860.3	0.0	267.4	240.7	278.7	0.0	9.761	ML/yr
	Mean		3.955			3.996			1.726			0.967		10.644	ML/yr
Seasonal Estimated Irrigation Water Required, ML/Season	Dry		3.158			4.460			3.386			2.890		13.893	ML/yr
nequireu, Mily Seasoii	Wet		4.161			3.953			1.128			0.519		9.761	ML/yr

		ETO mm/Month							Total, mm/yr					
ID	Weather Station	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
1	Norwa Ran Air Station (2010~2019)	152.24	115.42	105.88	85.92	79.29	54.75	74.78	89.91	113.40	137.70	140.07	155.27	1304.63
2	Norwa Ran Air Station (Dry 2018)	175.20	135.40	119.80	102.90	88.80	58.20	96.30	107.40	113.80	116.90	147.60	151.70	1414.00
3	Norwa Ran Air Station (Wet 2015)	146.90	77.00	104.90	72.40	79.60	49.30	63.50	80.10	97.10	143.80	142.70	165.50	1222.80
	Average of years 1961~1990 at the													
0	same location	107.00	82.00	73.00	37.00	23.00	23.00	21.00	21.00	36.00	69.00	90.00	102.00	684.00
							Rainfall m	m/Month						
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
1	Norwa Ran Air Station (2010~2019)	88.27	94.00	166.69	75.33	39.33	148.58	55.20	109.78	45.29	53.58	85.78	90.09	1051.91
2	Norwa Ran Air Station (Dry 2018)	69.20	124.20	52.20	37.40	21.80	47.60	6.80	24.00	27.20	77.20	175.00	88.60	751.20
3	Norwa Ran Air Station (Wet 2015)	129.40	27.60	79.80	233.60	118.80	56.00	76.40	431.60	46.80	36.20	55.40	47.20	1338.80
							·					·		
	Average of years 1961~1990 at the													
0	same location	111.20	121.84	146.90	136.18	101.45	115.03	76.84	88.07	78.90	92.00	110.12	103.23	1281.76

17 Annexure G: MUSIC Model Data

Table G1: General treatment node inputs.

Element	Factor	Input	Source
Setup	Climate File	Nowra RAN AWS	eWater
	Rainfall Threshold	Based on surface type specified in Table 5-4	BMT WBM (2015)
Source Nodes	Base & Stormflow properties	As per Table 5-6 & 5-7	BMT WBM (2015)
	Estimation Method	Stochastically generated	BMT WBM (2015)
	Low Flow By-Pass	0 m ³ /s	BMT WBM (2015)
	High Flow By-Pass	0.010 m³/s per dwelling	By Design
	Volume Below	5.0 kL per residential lot	By Design
	Overflow	15.0 kL per industrial lot	
	Surface Area	2.5 m ² per tank for residential lots	By Design
Rainwater		7.5 m ² per tank for industrial lots	
Tanks	Overflow Pipe Diameter	90 mm pipes for each tank	By Design
	Internal Re-use	1 ET = 0.265 kL/day/dwelling	NSW DWE (2008)
		1ET for dwellings and units	Shoalhaven
		15 ET/ha for industrial	Water (2012)
	External Re-use	55.115 kL/yr/single dwelling and industrial	BMT WBM (2015)
		32.12 kL/yr/multi-residential dwelling	
	Low Flow By-Pass	0 m ³ /s	BMT WBM (2015)
Gross	High Flow By-Pass	0.6 m ³ /s HumeGard (HG18)	Designed and
Pollutant		1.43 m³/s HumeGard (HG24)	specified by Holcim Australia
Traps		3.08 m ³ /s HumeGard (HG30)	
	Treatment Efficiency	As per manufacturer's specification	Holcim Australia
	Low Flow By-Pass	0 m³/s	BMT WBM (2015)
Biobasins	High Flow By-Pass	100 m³/s	Set to ensure all flows drain to bioretention basins
	Extended Detention Depth	0.30 m for primary, 0.70 m for secondary	By design, within AGFSBS (2015) standard range
	Surface Area	Varies (see Table G2)	By design
	Filter Area	Varies (see Table G2)	By design
	Unlined Filter Media Perimeter	0.01 m	By design
	Saturated Hydraulic Conductivity	100 mm/hr	BMT WBM (2015)

	Filter Depth	0.5 m	By design, within AGFSBS (2015) standard range	
	TN Content of Filter Media	400 mg/kg	BMT WBM (2015) default	
	Orthophosphate Content of Filer Media	40 mg/kg	BMT WBM (2015) default	
	Exfiltration Rate	0.25 mm/hr	By design	
	Lined Base	Yes for primary, No for secondary	By design	
	Vegetation Properties	With effective nutrient removal plants	By design	
	Overflow Weir Width	Varies (see Table G2)	By design	
	Underdrain Present	Yes	By design	
	Submerged Zone	Varies (see Table G2)	By design	
	Low Flow By-Pass	0 m ³ /s	BMT WBM (2015)	
	High Flow By-Pass	100 m ³ /s	Set to ensure all flows drain to ponds	
	Surface Area	Varies (see Table G3)	By design	
	Extended detention depth	2 m	By design	
Ponds	Permanent Pool Volume	Varies (see Table G3)	By design	
	Initial Volume	0 m ³	By design	
	Exfiltration Rate	0.25 mm/hr	Infiltration testing	
	Evaporation Loss	75%	By design	
	Equivalent Pipe Diameter	Varies (see Table G3)	By design	
	Overflow Weir Diameter	3 m	By design	

Table G2: Individual bioretention basin inputs.

Treatment Structure	Surface Area (m²)	Filter Area (m²)	Overflow Weir Width (m)	Submerged Zone Depth (m)
1	250	250	5	0.05
2	300	300	5	0.05
3	250	250	5	0.05
6	500	500	5	0.05
7	840	840	110	0
А	6,000	6,000	300	0
В	3,000	3,000	300	0.05
С	2,000	2,000	140	0.05
D	250	250	60	0.05

Table G3: Individual pond inputs.

Treatment Structure	Surface Area (m²)	Equivalent Pipe Diameter (mm)	Permanent Pool Volume (m³)
Pond 1	3,500	300	10,500
Pond 2	2,500	180	7,500
Pond 3	1,000	120	3,000

18 Annexure H: Groundwater Slug Tests

Single Bore Slug Test (Rising or Falling) Method ST-13 Revised 7.3.2007 PROJECT DETAILS P1002842 - Culburra Test Date 23.11.2010 Project P1002842JS01V01 Field Testing B.Rose and G.Taylor Project Ref GMB1 Borehole Ref Data Analysis **B.Rose** Hvorslev (1981) Reviewed **D.Martens** Method FIELD TEST DATA data used for analysis FACTOR **Enter Data** Unit Ground surface 14.29 H - Initial water level pressure (m H2O) m Casing h_o - Water level pressure at time = 0 (m H2O) 11.30 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.025 m Screen L - Length of open screen 3.05 Filter Pack ${\rm T_o}$ - Length of characteristic time 219.74 minutes K_{sat} - Saturated hydraulic conductivity 0.003 m/d Saturated zone DATA PLOT 1.000 0.100

20

40

60

100

120

140

160

80

Time (min)

Head Office

180

6/37 Leighton Place Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising or Falling) Method ST-13 Revised 7.3.2007 PROJECT DETAILS P1002842 - Culburra Test Date **23.11.2010** Project P1002842JS01V01 Field Testing B.Rose and G.Taylor Project Ref GMB1a Borehole Ref Data Analysis **B.Rose** Hvorslev (1981) Reviewed **D.Martens** Method FIELD TEST DATA data used for analysis **Enter Data FACTOR** Unit Ground surface 10.63 H - Initial water level pressure (m H2O) m Casing h_o - Water level pressure at time = 0 (m H2O) 10.32 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.025 m Screen L - Length of open screen 1.00 Filter Pack ${\rm T_o}$ - Length of characteristic time 48.08 minutes K_{sat} - Saturated hydraulic conductivity 0.035 m/d Saturated zone DATA PLOT 1.000 $R^2 = 0.71$ 0.100 20 40 60 80 100 120 140 160 180 Time (min)

Head Office

6/37 Leighton Place Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising or Falling) Method ST-13 Revised 7.3.2007 PROJECT DETAILS P1002842 - Culburra Test Date 22.11.2010 Project P1002842JS01V01 Field Testing B.Rose and G.Taylor Project Ref GMB2 Borehole Ref Data Analysis **B.Rose** Hvorslev (1981) Reviewed **D.Martens** Method FIELD TEST DATA data used for analysis **Enter Data FACTOR** Unit Ground surface 16.36 H - Initial water level pressure (m H2O) m Casing h_o - Water level pressure at time = 0 (m H2O) 10.41 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.025 m Screen L - Length of open screen 3.00 Filter Pack ${\rm T_o}$ - Length of characteristic time 16.84 minutes K_{sat} - Saturated hydraulic conductivity 0.043 m/d Saturated zone DATA PLOT 1.000 $R^2 = 0.947$ 0.100

100

80

Time (min)

120

140

160

0.010

20

40

60

Head Office

180

6/37 Leighton Place Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising or Falling) Method ST-13 Revised 7.3.2007 PROJECT DETAILS P1002842 - Culburra Test Date 23.11.2010 Project P1002842JS01V01 Field Testing B.Rose and G.Taylor Project Ref GMB6 Borehole Ref Data Analysis **B.Rose** Hvorslev (1981) Reviewed **D.Martens** Method FIELD TEST DATA data used for analysis **FACTOR Enter Data** Unit Ground surface 15.39 H - Initial water level pressure (m H2O) m Casing h_o - Water level pressure at time = 0 (m H2O) 10.50 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.025 m Screen L - Length of open screen 3.00 Filter Pack ${\rm T_o}$ - Length of characteristic time 97.69 minutes K_{sat} - Saturated hydraulic conductivity 0.007 m/d Saturated zone DATA PLOT 1.000 $R^2 = 0.9463$

0.100

20

40

60

100

80

Time (min)

120

Head Office

6/37 Leighton Place Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

19 Annexure I: Ksat Tests

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH302 Project Ref. No. 19/06/2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 43.5 0.01 45 1.0 43.5 0.000 2.0 43.5 0.000 0.00 45 3.0 43.4 0.004 0.00 4.0 43.4 0.000 44 5.0 43.3 0.004 0.00 ਵ 6.0 0.000 44 Ponded Water Depth (cm) 0.00 7.0 43.3 0.000 44 0.00 43 2 8.0 0.004 9.0 43.2 0.000 0.00 44 48.0 43.5 0.000 161.0 44.3 0.000 0.00 44 1152.0 44.7 0.000 0.00 -0.005 43 #DIV/0! 0.00 #DIV/0! 43 -0.01 #DIV/0! #DIV/0! 43 -0.01 200 400 600 800 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 0.91 Mean Outflow (Q) ml/min 1.77 Standard deviation in Q ml/min Saturated Hydraulic Conductivity (K_{sat}) 1.33 2.57 cm/day 0.55 mm/hr

0.013

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH303 Project Ref. No. 18.06.2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 43.0 0.00 1.0 43.0 0.000 2.0 43.0 0.000 0.00 3.0 43.0 0.000 4.0 43.0 0.000 43 0.00 5.0 43.0 0.000 0.00 6.0 0.000 42 Ponded Water Depth (cm) 7.0 43.0 0.000 42 -0.01 43.0 8.0 0.000 9.0 43.0 0.000 41 -0.01 g 10.0 43.0 0.000 -0.01 ustantane 47.0 42.5 0.001 41 165.0 41.3 0.000 40.2 0.000 258.0 -0.01 369.0 39.5 0.000 -0.015 40 -0.01 #DIV/0! #DIV/0! 39 -0.02 100 150 200 250 300 350 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 0.11 Mean Outflow (Q) ml/min

0.20

0.17

0.07

0.002

ml/min

cm/day

mm/hr

m/d

0.30

Standard deviation in Q

Saturated Hydraulic Conductivity (K_{sat})

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH304 Project Ref. No. 19/06/2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 0.02 60 15.7658724 1.0 53.5 0.016 2.0 53.5 0.000 0.02 3.0 53.0 0.016 50 4.0 53.0 0.000 0.01 5.0 53.0 0.000 6.0 53.0 0.000 40 0.01 Ponded Water Depth (cm) 7.0 52.8 0.006 0.01 52 8 8.0 0.000 30 9.0 52.8 0.000 0.01 127.0 47.8 0.001 220.0 45.7 0.001 20 0.01 44.7 271.0 0.001 0.006 1202.0 0.0 0.00 0.000 10 #DIV/0! 0.00 #DIV/0! #DIV/0! 0 0.00 200 400 600 800 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 3.94 Mean Outflow (Q) ml/min 7.10 Standard deviation in Q ml/min 8.44 Saturated Hydraulic Conductivity (K_{sat}) 5.23 cm/day

2.18

0.052

mm/hr

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH305 Project Ref. No. 18.06.2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 45.5 0.01 50 3.707628505 1.0 45.4 0.004 2.0 45.4 0.000 45 0.00 3.0 45.3 0.004 40 0.00 4.0 45.3 0.000 0.00 min 5.0 45.2 0.004 35 6.0 0.000 Ponded Water Depth (cm) Jilty 7.0 45.1 0.004 30 0.00 45 1 8.0 0.000 25 9.0 45.0 0.004 15.0 45.0 0.000 20 0.00 65.0 43.4 0.001 127.0 37.9 15 0.00 0.004 1045.0 19.0 0.001 0.00 10 -0.004 #DIV/0! 0.00 #DIV/0! #DIV/0! 0 -0.01 200 400 600 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit Mean Outflow (Q) 1.90 ml/min 1.85 Standard deviation in Q ml/min Saturated Hydraulic Conductivity (K_{sat}) 2.74 2.59 cm/day 1.14 mm/hr

0.027

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH306 Project Ref. No. 18.06.2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 0.01 50 7.345236387 1.0 45.8 0.007 3.684211887 2.0 45.7 0.004 45 0.01 3.0 45.6 0.004 40 4.0 45.5 0.004 0.01 <u>ê</u> 5.0 45.4 0.004 35 6.0 0.004 Ponded Water Depth (cm) 0.00 7.0 45.2 0.004 30 45.0 8.0 0.007 25 9.0 45.0 0.000 taneous 0.00 10.0 44.9 0.004 20 11.0 44.8 0.004 12.0 44.7 15 0.004 0.00 44.0 0.004 19.0 10 87.0 36.4 0.005 0.00 996.0 12.0 0.002 5 -0.004 #DIV/0! 0 -0.01 200 400 600 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 3.95 Mean Outflow (Q) ml/min 1.93 Standard deviation in Q ml/min Saturated Hydraulic Conductivity (K_{sat}) 5.64 2.57 cm/day 2.35 mm/hr

0.056

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH307 Project Ref. No. 18.06.2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface h - Hole depth 100.0 cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 43.0 0.05 50 39.54970586 1.0 42.0 0.040 2.0 42.0 0.000 0.04 45 3.0 41.5 0.020 0.04 40 4.0 41.5 0.000 5.0 41.5 0.000 0.03 35 6.0 0.000 Ponded Water Depth (cm) 0.03 7.0 41.5 0.000 30 0.02 41.5 8.0 0.000 25 9.0 41.5 0.000 0.02 396.0 39.2 0.000 20 0.01 1270.0 35.2 0.000 15 -0.004 0.01 #DIV/0! 10 #DIV/0! 0.00 #DIV/0! 5 -0.01 #DIV/0! #DIV/0! 0 -0.01 200 400 600 800 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 5.28 Mean Outflow (Q) ml/min Standard deviation in Q 12.43 ml/min 18.44 Saturated Hydraulic Conductivity (K_{sat}) 7.87 cm/day 3.28 mm/hr 0.079 m/d

Falling Head Soil Permeameter Field Data Analysis martens Method based on AS 1547 (1994) Method ST-15 Revised 20.3.2007 6/37 Leighton Place, Hornsby, NSW 2007, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au PROJECT DETAILS WEST CULBURRA P1203365JS010-V1-BH309 Project Ref. No. 18.06.2014 MLK AN Date Created Author Reviewed STEP 1 : ENTER TEST SITE DATA FACTOR **Enter Data** Unit Ground surface 100.0 h - Hole depth cm Auguer hole diameter Sands 50 mm Clays >75-100 mm Roughen hole Pre-soak hole before testing r - Radius 3.5 cm Ponded water depth measured at regular intervals during testing Saturated zone STEP 2 : ENTER TEST DATA H, Ponded Depth Permeability Time (min) (cm) (cm/min) 52 0.00 3.289474653 1.0 51.4 0.003 3.295669524 2.0 51.3 0.003 3.0 51.2 0.003 51 0.00 4.0 51.2 0.000 (cm/min) 5.0 51.2 0.000 6.0 51.2 0.000 50 Ponded Water Depth (cm) Permeabiilty 7.0 51.1 0.003 8.0 51 1 0.000 0.00 9.0 51.1 0.000 15.0 50.9 0.001 0.00 lbstantan 17.0 50.8 0.002 48 980.0 46.4 0.000 -0.006 #DIV/0! 47 -0.01 #DIV/0! #DIV/0! #DIV/0! -0.01 200 400 600 800 1000 1200 #DIV/0! #DIV/0! Time (min) #DIV/0! Ponded Water Depth (cm) -o-Instantaneous Permeability (cm/min) STEP 3: DETERMINE PERMEABILITY **FACTOR** Results Unit 1.56 Mean Outflow (Q) ml/min 1.79 Standard deviation in Q ml/min Saturated Hydraulic Conductivity (K_{sat}) 1.93 2.21 cm/day

0.81

0.019

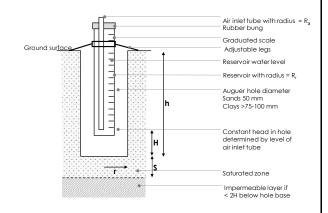
mm/hr

Method based on Talsma & Halam (1980), AS1547:2012

Method ST-7 Revised 16.03.2017

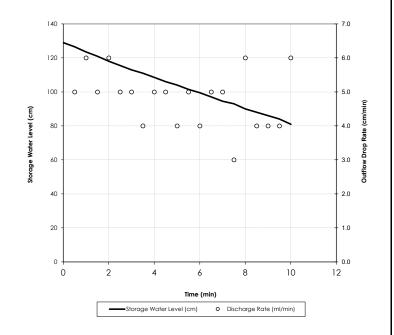
Suite 201, 20 George Street, Hornsby, NSW 2077, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

PROJECT DETAILS


Project	P1203365 - West Culburra			Ref. No.	BH501
Author	RJK/EZ	Reviewed	DM	Date Created	03.02.2020

STEP 1: ENTER BOREHOLE DATA

FACTOR


- h Hole depth
- H Ponded depth
- r Auger hole radius
- R_r Reservoir radius
- R_a Air inlet tube radius
- S Depth to impermeable layer
- c Permeameter constant

Enter Data	Unit
45.0	cm
18.0	cm
4.5	cm
1.6	cm
0.5	cm
355.0	cm
7.33	cm ³ /cm

STEP 2 : ENTER TEST DATA

Time (min)	Storage Level (cm)	Rate (cm/min)
0.0	129.0	
0.5	126.5	5.0
1.0	123.5	6.0
1.5	121.0	5.0
2.0	118.0	6.0
2.5	115.5	5.0
3.0	113.0	5.0
3.5	111.0	4.0
4.0	108.5	5.0
4.5	106.0	5.0
5.0	104.0	4.0
5.5	101.5	5.0
6.0	99.5	4.0
6.5	97.0	5.0
7.0	94.5	5.0
7.5	93.0	3.0
8.0	90.0	6.0
8.5	88.0	4.0
9.0	86.0	4.0
9.5	84.0	4.0
10.0	81.0	6.0

STEP 3: DETERMINE PERMEABILITY

FACTOR	Results			Unit	
Mean Outflow (Q)	35.20			ml/min	
Standard deviation in Q	6.11			ml/min	
K _{sat} - no impermeable layer	45.23	+/-	7.85	cm/day	< Use This Value
K_{sat} - with impermeable layer	4.88	+/-	4.73	cm/day	

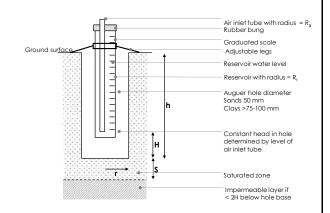
P1203365JS53V02JCF.xlsx_BH501 B 1 of 5

Method based on Talsma & Halam (1980), AS1547:2012

Method ST-7 Revised 16.03.2017

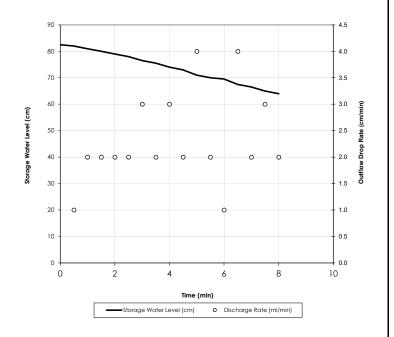
Suite 201, 20 George Street, Hornsby, NSW 2077, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

PROJECT DETAILS


Project	P1203365 - West Culburra			Ref. No.	BH502B
Author	RJK/EZ	Reviewed	DM	Date Created	03.02.2020

STEP 1: ENTER BOREHOLE DATA

FACTOR


- h Hole depth
- H Ponded depth
- r Auger hole radius
- R_r Reservoir radius
- Ra Air inlet tube radius
- S Depth to impermeable layer
- c Permeameter constant

Enter Data	Unit
54.0	cm
27.0	cm
4.5	cm
1.6	cm
0.5	cm
146.0	cm
7.33	cm ³ /cm

STEP 2 : ENTER TEST DATA

Time (min)	Storage Level (cm)	Rate (cm/min)
0.0	82.5	
0.5	82.0	1.0
1.0	81.0	2.0
1.5	80.0	2.0
2.0	79.0	2.0
2.5	78.0	2.0
3.0	76.5	3.0
3.5	75.5	2.0
4.0	74.0	3.0
4.5	73.0	2.0
5.0	71.0	4.0
5.5	70.0	2.0
6.0	69.5	1.0
6.5	67.5	4.0
7.0	66.5	2.0
7.5	65.0	3.0
8.0	64.0	2.0

STEP 3: DETERMINE PERMEABILITY

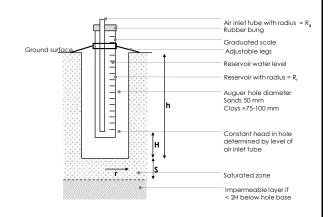
FACTOR Unit Results Mean Outflow (Q) 16.96 ml/min Standard deviation in Q 6.40 ml/min K_{sat} - no impermeable layer 12.88 4.86 <-- Use This Value +/cm/dav K_{sat} - with impermeable layer 4.15 3.00 cm/day

Method based on Talsma & Halam (1980), AS1547:2012

Method ST-7 Revised 16.03.2017

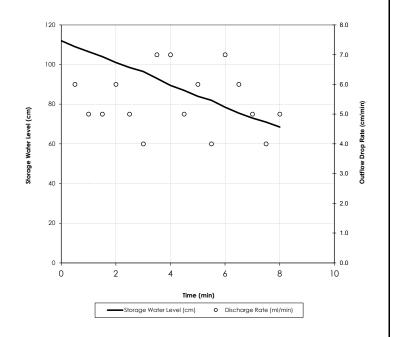
Suite 201, 20 George Street, Hornsby, NSW 2077, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

PROJECT DETAILS


Project	P1203365 - West Culburra			Ref. No.	BH503B
Author	RJK/EZ	Reviewed	DM	Date Created	03.02.2020

STEP 1: ENTER BOREHOLE DATA

FACTOR


- h Hole depth
- H Ponded depth
- r Auger hole radius
- R_r Reservoir radius
- Ra Air inlet tube radius
- S Depth to impermeable layer
- c Permeameter constant

Enter Data	Unit
45.0	cm
8.0	cm
4.5	cm
1.6	cm
0.5	cm
255.0	cm
7.33	cm³/cm

STEP 2 : ENTER TEST DATA

Time (min)	Storage Level (cm)	Rate (cm/min)
0.0	112.0	
0.5	109.0	6.0
1.0	106.5	5.0
1.5	104.0	5.0
2.0	101.0	6.0
2.5	98.5	5.0
3.0	96.5	4.0
3.5	93.0	7.0
4.0	89.5	7.0
4.5	87.0	5.0
5.0	84.0	6.0
5.5	82.0	4.0
6.0	78.5	7.0
6.5	75.5	6.0
7.0	73.0	5.0
7.5	71.0	4.0
8.0	68.5	5.0

STEP 3: DETERMINE PERMEABILITY

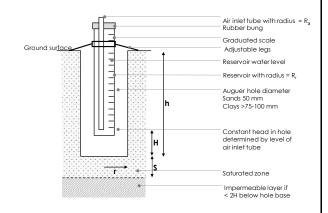
FACTOR Unit Results Mean Outflow (Q) 39.88 ml/min Standard deviation in Q 7.56 ml/min K_{sat} - no impermeable layer 132.07 25.04 <-- Use This Value +/cm/dav K_{sat} - with impermeable layer 7.39 9.19 cm/day

Method based on Talsma & Halam (1980), AS1547:2012

Method ST-7 Revised 16.03.2017

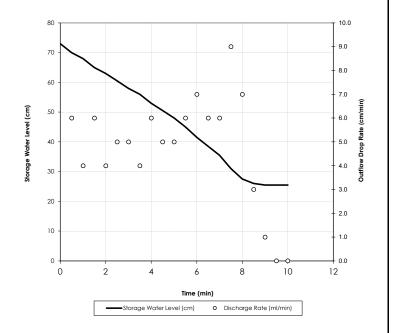
Suite 201, 20 George Street, Hornsby, NSW 2077, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

PROJECT DETAILS


Project	P1203365 - West Culburra			Ref. No.	BH504
Author	RJK/EZ	Reviewed	DM	Date Created	03.02.2020

STEP 1: ENTER BOREHOLE DATA

FACTOR


- h Hole depth
- H Ponded depth
- r Auger hole radius
- R_r Reservoir radius
- R_{α} Air inlet tube radius
- S Depth to impermeable layer
- c Permeameter constant

Enter Data	Unit
50.0	cm
17.0	cm
4.5	cm
1.6	cm
0.5	cm
450.0	cm
7.33	cm ³ /cm

STEP 2 : ENTER TEST DATA

Time (min)	Storage Level (cm)	Rate (cm/min)
0.0	73.0	
0.5	70.0	6.0
1.0	68.0	4.0
1.5	65.0	6.0
2.0	63.0	4.0
2.5	60.5	5.0
3.0	58.0	5.0
3.5	56.0	4.0
4.0	53.0	6.0
4.5	50.5	5.0
5.0	48.0	5.0
5.5	45.0	6.0
6.0	41.5	7.0
6.5	38.5	6.0
7.0	35.5	6.0
7.5	31.0	9.0
8.0	27.5	7.0
8.5	26.0	3.0
9.0	25.5	1.0
9.5	25.5	0.0
10.0	25.5	0.0

STEP 3: DETERMINE PERMEABILITY

 FACTOR
 Results
 Unit

 Mean Outflow (Q)
 34.83
 ml/min

 Standard deviation in Q
 12.78
 ml/min

K_{sat} - no impermeable layer

 K_{sat} - with impermeable layer

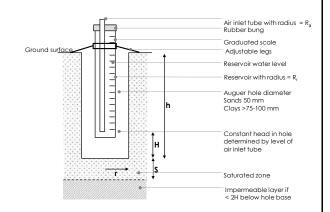
48.06 3.94 +/- 17.63 +/- 10.53 cm/day cm/day <-- Use This Value

Method based on Talsma & Halam (1980), AS1547:2012

Method ST-7 Revised 16.03.2017

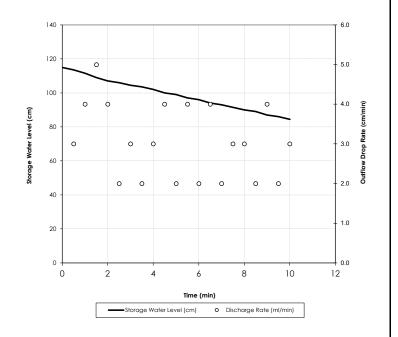
Suite 201, 20 George Street, Hornsby, NSW 2077, Ph: (02) 9476 9999 Fax: (02) 9476 8767, mail@martens.com.au, www.martens.com.au

PROJECT DETAILS


Project	P120	Ref. No.	BH505		
Author	RJK/EZ	Reviewed	DM	Date Created	03.02.2020

STEP 1: ENTER BOREHOLE DATA

FACTOR


- h Hole depth
- H Ponded depth
- r Auger hole radius
- R_r Reservoir radius
- R_{α} Air inlet tube radius
- S Depth to impermeable layer
- c Permeameter constant

Enter Data	Unit
60.0	cm
27.0	cm
4.5	cm
1.6	cm
0.5	cm
440.0	cm
7.33	cm ³ /cm

STEP 2 : ENTER TEST DATA

Time (min)	Storage Level (cm)	Rate (cm/min)
0.0	115.0	
0.5	113.5	3.0
1.0	111.5	4.0
1.5	109.0	5.0
2.0	107.0	4.0
2.5	106.0	2.0
3.0	104.5	3.0
3.5	103.5	2.0
4.0	102.0	3.0
4.5	100.0	4.0
5.0	99.0	2.0
5.5	97.0	4.0
6.0	96.0	2.0
6.5	94.0	4.0
7.0	93.0	2.0
7.5	91.5	3.0
8.0	90.0	3.0
8.5	89.0	2.0
9.0	87.0	4.0
9.5	86.0	2.0
10.0	84.5	3.0

STEP 3: DETERMINE PERMEABILITY

FACTOR Results Unit Mean Outflow (Q) 22.37 ml/min Standard deviation in Q 6.93 ml/min K_{sat} - no impermeable layer 16.98 5.26 cm/day <-- Use This Value +/- K_{sat} - with impermeable layer 2.12 3.25 cm/day

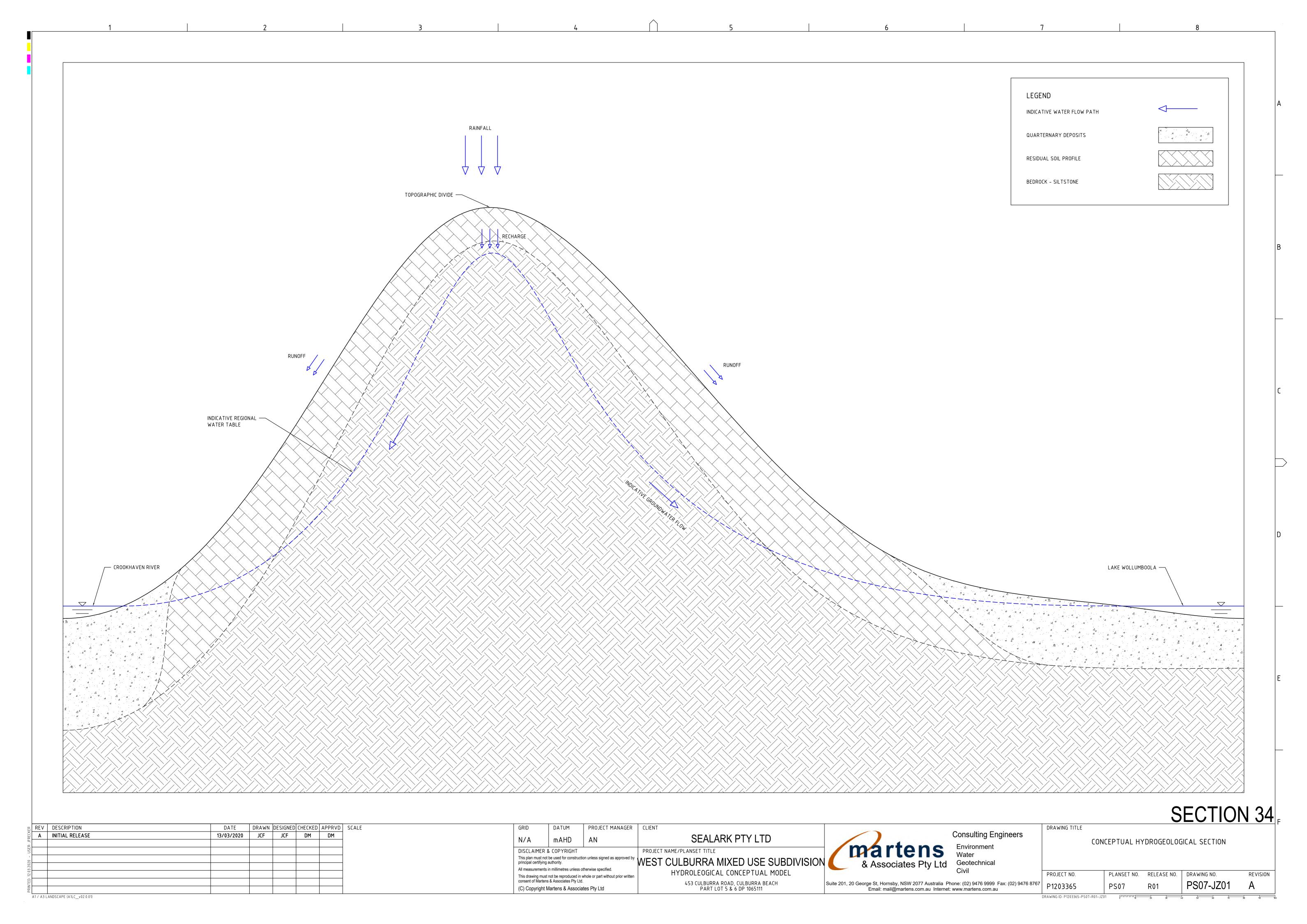
P1203365JS53V02JCF.xlsx_BH505 B 5 of 5

20 Annexure J: Aquifer Interference Assessment

Table 61: Aquifer interference assessment.

	Minimal Impact Consideration	Assessment ¹
	Water Table	
1.	Less than or equal to a 10% cumulative variation in the water table, allowing for typical climatic "post-water sharing plan" variations, 40m from any: a) high priority groundwater dependent ecosystem; or b) high priority culturally significant site; listed in the schedule of the relevant water sharing plan; or	Complies -there are no GDEs on, or downstream of the proposed development and no groundwater supply works within the areas of drawdown as discussed in section 5.6.3.
	A maximum of a 2m decline cumulatively at any water supply work.	
2.	If more than 10% cumulative variation in the water table, allowing for typical climatic "post-water sharing plan" variations, 40m from any: a) high priority groundwater dependent ecosystem; or b) high priority culturally significant site; listed in the schedule of the relevant water sharing plan then appropriate studies (including the hydrogeology, ecological condition and cultural function) will need to demonstrate to the Minister's satisfaction that the variation will not prevent the long-term viability of the dependent ecosystem or significant site. If more than 2m decline cumulatively at any water supply work then make good provisions should apply.	Condition 1 is met.
	Water Pressure	
1.	A cumulative pressure head decline of not more than a 2m decline, at any water supply work.	Complies – no groundwater supply works within the areas of drawdown as discussed in section 5.6.3.
2.	If the predicted pressure head decline is greater than requirement 1. above, then appropriate studies are required to demonstrate to the Minister's satisfaction that the decline will not prevent the long-term viability of the affected water supply works unless make good provisions apply.	Condition 1 is met.
	Water Quality	
1.	Any change in the groundwater quality should not lower the beneficial use category of the groundwater source beyond 40m from the activity.	Complies – groundwater quality will not be materially impacted by the proposed development as discussed in section 5.6.5.
2.	If condition 1 is not met then appropriate studies will need to demonstrate to the Minister's satisfaction that the change in groundwater quality will not prevent the long-term viability of the dependent ecosystem, significant site or affected water supply works.	Condition 1 is met.

^{1.} For less productive porous and fractured rock water sources.


21 Annexure K: All Groundwater Quality Results

				Jrav)												(OH-) as CaCO3	as CaCO3	CaCO3	13					
		_	Electrical Conductivity	Total Dissolved Solids(grav)	NOx as N in water	Ammonia as N in water	Total Nitrogen in water	Phosphate as P in water	Nitrate as N in water	Nitrite as N in water	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (C	Bicarbonate Alkalinity	Carbonate Alkalinity as	otal Alkalinity as CaCO	Sulphate, SO4	Chloride, Cl	Ionic Balance	Phosphorus - Total	Aluminium-Dissolved
		J J				_			.															_
	DOL	pH Units	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mgCaCO3/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mg/L	μg/L
Cample	PQL	N/A	ı	5	0.005	0.005	0.1	0.005	0.005	0.005	0.5	0.5	0.5	0.5	3	5	5	5	5	I	l		0.05	10
Sample BH01	Date Sampled 19/09/2019	4.6	1000	580	0.3	0.056	0.9	<0.005	0.29	<0.005	3	< 0.5	180	13	61	< 5	<5	<5	< 5	23	300	0	0.07	430
BH01	23/10/2019	5.4	1300	800	0.006	0.048	0.3	< 0.005	< 0.005	V0.000	2.9	0.7	240	12	56	<5	7	<5	7	29	330	7	0.1	80
BH01	28/11/2019	5.4	2600	1600	0.01	0.15	0.4	0.014	0.01		5.4	2.3	700	37	160	<5	17	<5	17	210	750	13	0.1	230
BH01	09/01/2020	5.1	3400	2100	0.007	0.18	1.7	0.008	0.006		6	2.6	590	40	180	<5	16	<5	16	270	950	-5	0.08	40
BH01	19/02/2020	4.6	1200	670	0.7	0.028	1	0.009	0.7		4.7	0.7	210	17	82	<5	<5	<5	< 5	60	350	-1	0.1	550
BH01	20/03/2020	5	1300	930	0.2	0.034	0.6	< 0.005	0.16		2.6	0.6	280	13	60	< 5	< 5	< 5	< 5	58	420	1	0.07	190
BH02	19/09/2019	4.8	170	170	0.4	0.011	0.9	< 0.005	0.39	< 0.005	< 0.5	< 0.5	22	1.4	6	<5	<5	<5	< 5	9	36	-5	0.05	80
BH02	23/10/2019	5.9	190	220	0.08	0.007	0.2	< 0.005	0.076		3.8	< 0.5	37	1.3	15	<5	16	<5	16	14	34	10	0.08	20
BH02	28/11/2019	4.8	190	270	0.1	0.024	0.3	< 0.005	0.12		< 0.5	< 0.5	37	0.8	3.3	< 5	29	<5	29	17	38	-9	0.2	30
BH02	09/01/2020	4.9	210	280	0.08	0.084	6.7	< 0.005	0.082		< 0.5	< 0.5	27	0.6	<3	< 5	< 5	<5	< 5	19	44	-14	0.7	20
BH02	19/02/2020	5	200	150	0.2	0.015	0.4	0.006	0.21		< 0.5	0.7	33	1.8	7.3	<5	<5	<5	< 5	18	43	0	< 0.05	2300
BH02	20/03/2020	5	190	210	0.3	0.064	0.6	< 0.005	0.29		< 0.5	< 0.5	35	1.1	4.6	< 5	<5	<5	< 5	16	50	-3	0.2	20
BH06	19/09/2019	6	18000	11000	< 0.005	0.006	0.3	< 0.005	< 0.005	< 0.005	130	5.3	2800	600	2800	< 5	48	< 5	48	730	6200	-3	< 0.05	90
BH06	23/10/2019	6.1	18000	11000	0.01	0.039	< 0.1	0.006	0.007		140	6.6	2900	710	3300	< 5	53	<5	53	710	6000	3	< 0.05	70
BH06	28/11/2019	6	17000	9400	0.01	0.043	< 0.1	< 0.005	0.01		150	6.6	3300	700	3300	< 5	58	<5	58	730	5800	7	< 0.05	60
BH06	09/01/2020	5.8	17000	14000	0.02	0.067	1.9	0.009	0.02		140	7.2	2700	680	3100	< 5	62	< 5	62	790	6300	-4	0.2	<10
BH06	19/02/2020	6.1	16000	12000	0.01	0.067	0.3	0.008	0.01		130	7	2800	610	2800	<5	53	<5	53	750	5700	0	0.2	550
BH06	20/03/2020	6	16000	12000	0.007	0.051	0.2	< 0.005	0.006		140	6.3	3000	680	3100	< 5	59	<5	59	770	6000	3	< 0.05	30
BH403B	19/09/2019	6.6	2400	1400	< 0.005	0.009	0.2	0.05	< 0.005	<0.005	19	2.4	440	27	160	< 5	200	< 5	200	140	520	1	0.09	<10
	23/10/2019	6.8	2300	1300			< 0.1	0.027	< 0.005		21	2.6	460	31	180	< 5	200	< 5	200	130	490	8	0.2	<10
-	28/11/2019	6.6	2300	1300	0.02	0.038	0.1	0.04	0.01		22	2.8	530	32	190	< 5	200	< 5	200	160	590	6	0.4	<10
	09/01/2020	6.4	2400	1400	< 0.005	0.041	5.8	0.019	< 0.005		20	2.5	400	30	170	< 5	200	< 5	200	150	560	-4	1.1	20
MB404	23/10/2019	7.2	1900	1200	< 0.005	0.36	0.4	< 0.005	< 0.005		49	4.7	330	33	260	< 5	330	< 5	330	140	300	4	0.1	<10
MB404	28/11/2019	7.2	2100	1400	0.1	0.51	0.7	0.058	0.11		81	5.6	450	47	400	< 5	480	< 5	480	210	340	8	0.06	<10
MB404	09/01/2020	6.9	2200	1500	< 0.005	0.58	0.9	0.081	< 0.005		79	5.3	370	48	390	< 5	540	< 5	540	240	370	-4	0.4	<10
MB404	19/02/2020	7.3	2200	1200	< 0.005	0.51	0.6	0.13	< 0.005		68	5.7	410	43	350	<5	530	<5	530	230	310	1	0.4	<10
MB404 MB407A	20/03/2020 20/03/2020	7.3 6.7	2100 330	1400	<0.005	0.52	0.8	0.066	<0.005		68 7.5	4.8	410	5.2	350 40	<5 <5	520	<5 <5	520 65	230	330 51	ا د	0.2	<10 300
	20/03/2020			260 1900		0.046	0.9	0.12	0.02		7.5 42	2	53 560			<5 <5	65 110	<5 <5	110	27	1000	-2 -1	0.07	-
IVID4UŏA	ZU/U3/ZUZU	6.3	3200	1900	0.01	U.IŎ	0.9	U. I Z	0.01		42	4.6	200	80	430	< 0	110	< 0	110	120	1000	- 1	∪.4	<10

	,																						<u> </u>
													ō										
					$\overline{\sigma}$	~		D				/ed	<u>×</u>			_	ō	_	ō				
		D	_	ō	Vec	-Dissolved	77) IVE	eq		eq	<u>\</u>	980			ssolved	<u>></u>	/ed	-Dissolved		,eq		
		<u> </u>	/ed	<u> </u>	sol	sol	\e	SSC	lve	ō	-Dissolved	iss	Ö	/ec	D	SO	980	000	SSO	0	Dissolved	E S	
		SSC	100	980	Dis	Dis	sol	<u> </u>	SSO	<u>×</u>	İSS		Ė	30	1	Dis	Ö)iss	Ä	<u>></u>	iss	for	
		Arsenic-Dissolved	on-Dissolved	Barium-Dissolved	Beryllium-Dissolved	Ė	Cobalt-Dissolved	Chromium-Dissolved	-Dissolv	Iron-Dissolved		Manganese-Dissolved	Molybdenum-Dissolved	Nickel-Dissolved	Lead-Dissolved		Strontium-Dissolved	Titanium-Dissolved		Zinc-Dissolved	1	Faecal Coliforms	
		nic]-U	Ė	i i	Cadmium	<u>t</u> -	Ë	Copper-	\Box	Mercury	gar	pq	<u>-</u>	Ģ	Selenium)til	Ţ	Vanadium	Ä	* _	<u>a</u>	=
		Se	Boro	ariu	ery	adr	gqc	סור	ddc	OU	erc	aní	oly	i CK	ad	<u>6</u>	0	tar	ana	ПĊ	Silicon	a e c	COli
						_											 						cfu/100ml
	PQL	μg/L 1	μg/L 20	μg/L 1	μg/L 0.5	μg/L 0.1	μg/L 1	µg/L 1	μg/L 1	μg/L 10	μg/L 0.05	μg/L 5	μg/L 1	μg/L 1	μg/L 1	μg/L 1	μg/L 1	μg/L 1	μg/L 1	μg/L 1	mg/L 0.2	cfu/100mL	cfu/100mL
Sample	-	ı	20	ı	0.5	0.1	'	ı	ı	10	0.05	5	ı	ı	'		'	'	ı		0.2	'	
Sample BH01	Date Sampled 19/09/2019	<1	90	120	< 0.5	< 0.1	2	<1	4	78	< 0.05	14	<1	1	<1	<1	77	<1	<1	80	10		
BH01	23/10/2019	<1	100	67	< 0.5	<0.1	4	<1	4	13	< 0.05	52	<1	3	<1	<1	50	<1	<1	61	17	<10	<u> </u>
BH01	28/11/2019	<1	200	100	< 0.5	<0.1	23	<1	5	1500	< 0.05	470	<1	20	<1	<1	150	<1	2	81	26	<10	<10
	09/01/2020	<1	210	59	< 0.5	0.2	33	<1	5	<10	< 0.05	630	<1	31	<1	<1	170	<1	1	130	28	<20	<20
BH01	19/02/2020	<1	100	120	0.7	< 0.1	4	6	10	150	< 0.05	36	<1	3	<1	<1	94	7.4	<1	260	6.7	<20	<20
BH01	20/03/2020	<1	100	76	< 0.5	<0.1	6	2	6	64	< 0.05	55	<1	6	<1	<1	65	<1	<1	120	17	<20	<20
BH02	19/09/2019	<1	50	26	< 0.5	<0.1	<1	<1	2	160	< 0.05	<5	<1	<1	<1	<1	4.9	4.2	<1	28	10	120	120
BH02	23/10/2019	<1	70	12	< 0.5	< 0.1	<1	<1	2	13	< 0.05	26	<1	<1	<1	<1	19	1.7	<1	12	27	<10	
BH02	28/11/2019	<1	80	9	< 0.5	< 0.1	<1	<1	<1	12	< 0.05	< 5	<1	<1	<1	<1	2.4	1.1	3	9	29	<20 MPN/100mL	<20 MPN/100mL
BH02	09/01/2020	<1	80	6	< 0.5	< 0.1	<1	<1	1	18	< 0.05	<5	<1	<1	<1	<1	1.6	<1	<1	10	28	<20	<20
BH02	19/02/2020	2	70	43	< 0.5	< 0.1	<1	13	8	1300	< 0.05	< 5	<1	<1	2	<1	9.8	100	3	48	17	5400	5400
BH02	20/03/2020	<1	60	13	< 0.5	< 0.1	<1	<1	2	36	< 0.05	< 5	<1	<1	<1	<1	4.8	<1	<1	22	26	1700	1700
BH06	19/09/2019	<1	80	28	1	0.4	63	<1	3	<10	< 0.05	1200	<1	66	<1	<1	1500	<1	<1	270	17		
BH06	23/10/2019	<1	90	29	1	0.7	77	<1	4	<10	< 0.05	1300	<1	67	<1	<1	1500	<1	<1	290	18	<100	
BH06	28/11/2019	<1	100	27	2	0.5	110	<1	3	<10	< 0.05	1700	<1	72	<1	<1	1600	<1	1	230	18	<1	<1
BH06	09/01/2020	<1	90	33	0.7	0.4	110	<1	4	<10	< 0.05	1800	<1	76	<1	<1	1500	<1	<1	230	19	<20	<20
BH06	19/02/2020	<1	90	35	1	0.5	95	<1	4	550	< 0.05	1600	<1	71	<1	<1	1500	32	<1	270	19	20	20
BH06	20/03/2020	<1	70	24	1	0.4	100	<1	1	450	< 0.05	1900	<1	70	<1	<1	1600	<1	<1	160	19	<20	<20
BH403B	19/09/2019	<1	200	24	< 0.5	< 0.1	15	17	<1	130	< 0.05	950	<1	10	<1	<1	180	<1	<1	23	20		
MB403B	23/10/2019	<1	200	23	< 0.5	< 0.1	13	<1	<1	21	< 0.05	970	<1	11	<1	<1	180	2.1	2	18	20	<10	
MB403B	28/11/2019	<1	200	50	< 0.5	< 0.1	14	<1	<1	31	< 0.05	1100	<1	9	<1	<1	180	1.6	2	27	21	<20 MPN/100mL	<20 MPN/100mL
MB403B	09/01/2020	<1	200	21	< 0.5	0.1	7	<1	<1	59	< 0.05	840	<1	5	<1	<1	180	2.5	3	3	20	<20	< 20
MB404	23/10/2019	<1	200	21	< 0.5	< 0.1	2	<1	<1	14	< 0.05	320	<1	5	<1	<1	2000	<1	1	8	16	<1	
MB404	28/11/2019	<1	200	30	< 0.5		2	<1	1	<10	< 0.05	240	<1	4	<1	<1	2800	<1	2	18	15	<10	<10
	09/01/2020	<1	200	23	< 0.5		<1	<1	<1	<10	< 0.05	140	<1	<1	<1	<1	2700	<1	<1	3	13	<20	<20
	19/02/2020	<1	200	21	< 0.5		<1	<1	<1	10	< 0.05	120	<1	<1	<1	<1	2300	_	<1	14	15	< 20	<20
	20/03/2020	<1	200	19	< 0.5		<1	<1	<1	11	< 0.05	150	<1	1	<1	<1	2400	<1	<1	12	14	<100 CFU/100mL	<100 CFU/100mL
	20/03/2020	<1	30	13	< 0.5		1	<1	8	630	< 0.05	120	<1	6	<1	<1	73	3.2	2	73	5.8	110	110
MB408A	20/03/2020	<1	100	42	0.6	< 0.1	7	<1	<1	9100	< 0.05	1600	<1	21	<1	<1	240	<1	<1	16	29	<100 CFU/100mL	<100 CFU/100mL

22 Annexure L: Hydrogeological Conceptual Section

23 Annexure M: Surface Water Sampling Data

Work Order : EW1804961 Page

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Glenn Davies

Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

: 19-Dec-2018 10:30

Australia NSW Australia

: 1 of 3

Telephone : ---- Telephone : 02 42253125

Project : P1203365- Stormwater Engineering: Mixed Use Subdivision Date Samples Received : 29-Nov-2018 12:25

West Culburra

Order number : P1203365 Date Analysis Commenced : 29-Nov-2018

C-O-C number : ---Sampler : ---Site : ----

Quote number : --
No. of samples received : 7

No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Issue Date

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Glenn Davies Environmental Services Representative Laboratory - Wollongong, NSW

Page : 2 of 3 Work Order : EW1804961

Client : WOLLONGONG CASH CLIENTS

Project : P1203365- Stormwater Engineering: Mixed Use Subdivision West Culburra

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK061G: Poor spike recovery for TKN on sample 2 due to matrix interferences.
- pH data supplied by ALS Wollongong.
- pH tests completed on day of receipt.

Page : 3 of 3 Work Order : EW1804961

Client : WOLLONGONG CASH CLIENTS

Project : P1203365- Stormwater Engineering: Mixed Use Subdivision West Culburra

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Α	В	С	D	G
	Cli	ent sampli	ng date / time	29-Nov-2018 00:00				
Compound	CAS Number	LOR	Unit	EW1804961-001	EW1804961-002	EW1804961-003	EW1804961-004	EW1804961-007
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	2.7	2.3	2.0	4.3	4.0
EA010FD: Field Conductivity								
Conductivity @ 25oC		1	μS/cm	991	2150	5750	4300	2940
EA025: Total Suspended Solids drie	ed at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	10	8	11	11	<5
EK055G: Ammonia as N by Discrete	e Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.37	0.22	0.09	0.01	0.10
EK057G: Nitrite as N by Discrete A	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete A	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.98	0.44	0.44
EK059G: Nitrite plus Nitrate as N (l	NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.98	0.44	0.44
EK061G: Total Kjeldahl Nitrogen By	y Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.7	1.1	0.6	0.6	0.9
EK062G: Total Nitrogen as N (TKN	+ NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	1.7	1.1	1.6	1.0	1.3
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.01	0.01	0.02	0.04	0.02

Work Order : EW1902455 Page : 1 of 3

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Glenn Davies

Address

Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone

Telephone 02 42253125

Project : West Culburra **Date Samples Received** : 06-Jun-2019 08:58

C-O-C number

Order number

Date Analysis Commenced : 07-Jun-2019

Sampler · Vic Walker Issue Date

· 25-Jun-2019 16:33

Site

Quote number No. of samples received : 5 No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Page : 2 of 3 Work Order : EW1902455

Client : WOLLONGONG CASH CLIENTS

Project : West Culburra

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

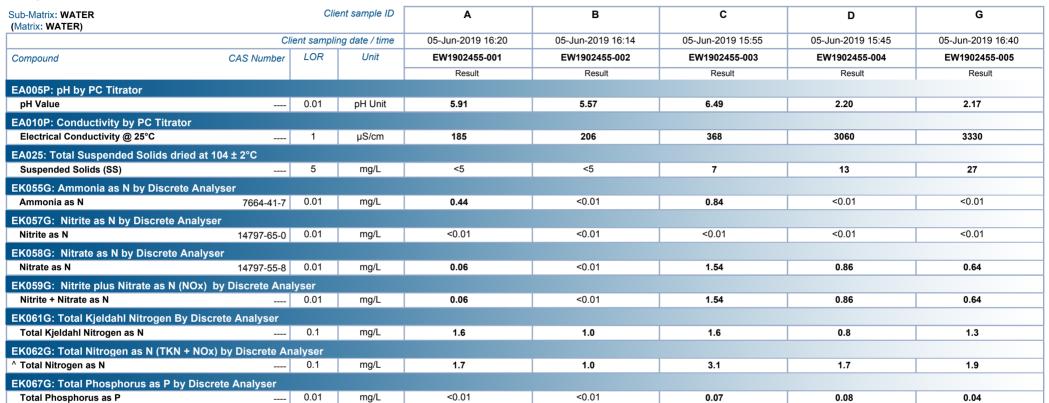
Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.


EK057G: Poor spike recovery for Nitrite due to matrix interferences.

Page : 3 of 3 Work Order : EW1902455

Client : WOLLONGONG CASH CLIENTS

Project : West Culburra

Work Order : EW1902698 Page : 1 of 3

Client : WOLLONGONG CASH CLIENTS

North Nowra 2541

Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Aneta Prosaroski

Address : Unit 4 13 Geary Place Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone

Telephone

: +61 2 4225 3125

Project : West Culburra **Date Samples Received** : 25-Jun-2019 15:52

Date Analysis Commenced : 26-Jun-2019

C-O-C number

Order number

Issue Date

· 02-Jul-2019 17:06

Sampler Site : EN/333 Quote number

No. of samples received : 5 : 5 No. of samples analysed

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Page : 2 of 3 Work Order : EW1902698

Client : WOLLONGONG CASH CLIENTS

Project : West Culburra

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

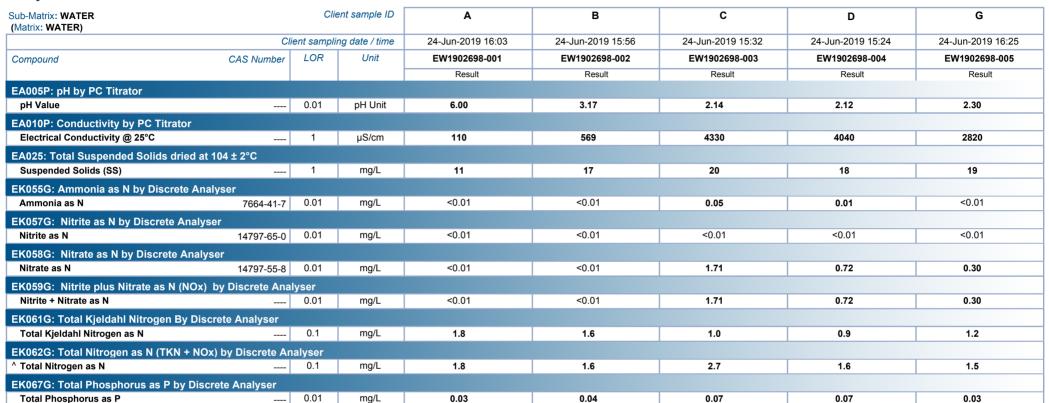
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 3 Work Order : EW1902698

Client : WOLLONGONG CASH CLIENTS

Project : West Culburra

Work Order : **EW2000641** Page : 1 of 4

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris : Aneta Prosaroski

Address : Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone : +61 2 4225 3125

Project : N25405 Date Samples Received : 07-Feb-2020 16:06
Order number Date Analysis Commenced : 07 Feb 2020

 Order number
 : -- Date Analysis Commenced
 : 07-Feb-2020

 C-O-C number
 : -- Issue Date
 : 17-Feb-2020 08:40

Sampler : ----Site : ----

Quote number : EN/333

No. of samples received : 3

No. of samples analysed : 3

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Glenn Davies Environmental Services Representative Laboratory - Wollongong, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Ivan TaylorAnalystSydney Inorganics, Smithfield, NSWTony DeSouzaSenior MicrobiologistSydney Microbiology, Smithfield, NSW

Page : 2 of 4
Work Order : EW2000641

Client : WOLLONGONG CASH CLIENTS

Project : N25405

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

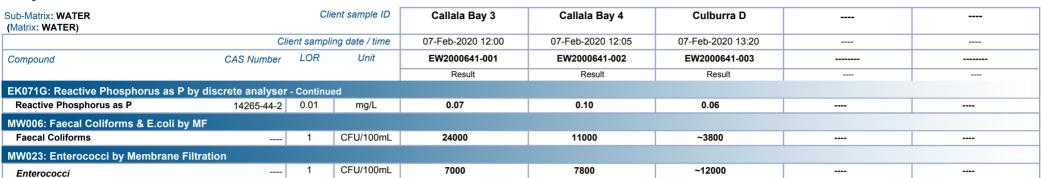
LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu.
- pH and conductivity data supplied by ALS Wollongong.
- Membrane filtration results for MW006 No. 3 are reported as an estimate (~) due to the presence of many non-target organism colonies that may have inhibited the growth of the target organisms on the filter membrane. It may be informative to record this fact.
- pH and conductivity tests completed on day of receipt.
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2000641

Client : WOLLONGONG CASH CLIENTS

Project : N25405



ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	Callala Bay 3	Callala Bay 4	Culburra D	
	Cli	ent sampli	ng date / time	07-Feb-2020 12:00	07-Feb-2020 12:05	07-Feb-2020 13:20	
ompound	CAS Number	LOR	Unit	EW2000641-001	EW2000641-002	EW2000641-003	
				Result	Result	Result	
A005FD: Field pH							
pH		0.1	pH Unit	7.2	6.9	7.3	
EA010FD: Field Conductivity							
Electrical Conductivity (Non		1	μS/cm	118	139	208	
Compensated)							
EA025: Total Suspended Solids dri	ied at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	35	20	14	
ED093F: SAR and Hardness Calcul	lations						
Total Hardness as CaCO3		1	mg/L	23	26	38	
EG020T: Total Metals by ICP-MS							•
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.002	0.003	0.004	
Copper	7440-50-8	0.001	mg/L	0.005	0.005	0.008	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	0.002	0.002	<0.001	
Zinc	7440-66-6	0.005	mg/L	0.023	0.040	0.084	
EG035T: Total Recoverable Mercu	ry by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EK055G: Ammonia as N by Discret							
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.02	0.62	
EK057G: Nitrite as N by Discrete A		0.01	9/_			0.02	
Nitrite as N by Discrete A	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
		0.01	mg/L	10.01	-0.01	-0.01	
EK058G: Nitrate as N by Discrete A Nitrate as N		0.01	mg/L	0.20	0.24	0,24	
	14797-55-8		mg/L	U.ZU	U. ∠ 4	U.24	
K059G: Nitrite plus Nitrate as N (0.01	0.04	
Nitrite + Nitrate as N		0.01	mg/L	0.20	0.24	0.24	
K061G: Total Kjeldahl Nitrogen B	y Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.3	1.3	
K062G: Total Nitrogen as N (TKN	+ NOx) by Discrete An						
Total Nitrogen as N		0.1	mg/L	0.6	0.5	1.5	
EK067G: Total Phosphorus as P by	y Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	0.15	0.11	0.07	

Page : 4 of 4
Work Order : EW2000641

Client : WOLLONGONG CASH CLIENTS

Project : N25405

Work Order Page : EW2000648

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Aneta Prosaroski

Address Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

· 18-Feb-2020 16:59

Australia NSW Australia

: 1 of 6

Telephone Telephone : +61 2 4225 3125

Project : Culburra Beach and Callala Bay **Date Samples Received** : 10-Feb-2020 11:06

Order number : N25405 **Date Analysis Commenced** : 09-Feb-2020 C-O-C number Issue Date

Sampler : James Harris, Vic

Site

: EN/333 Quote number No. of samples received : 6 : 6 No. of samples analysed

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Glenn Davies **Environmental Services Representative** Laboratory - Wollongong, NSW

Ivan Taylor Sydney Inorganics, Smithfield, NSW Analyst Tony DeSouza Senior Microbiologist Sydney Microbiology, Smithfield, NSW Page : 2 of 6
Work Order : EW2000648

Client : WOLLONGONG CASH CLIENTS
Project : Culburra Beach and Callala Bay

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu.
- pH and electrical conductivity data supplied by ALS Wollongong.
- pH and electrical conductivity test completed on day of receipt.
- Sampling completed by client
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6
Work Order : EW2000648

Client : WOLLONGONG CASH CLIENTS
Project : Culburra Beach and Callala Bay

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Α	В	С	D	G
	CI	lient sampli	ng date / time	09-Feb-2020 18:05	09-Feb-2020 18:12	09-Feb-2020 18:25	09-Feb-2020 18:38	09-Feb-2020 17:30
Compound	CAS Number	LOR	Unit	EW2000648-001	EW2000648-002	EW2000648-003	EW2000648-004	EW2000648-005
				Result	Result	Result	Result	Result
EA005FD: Field pH								
рН		0.1	pH Unit	6.1	5.2	6.3	7.1	6.2
EA010FD: Field Conductivity								
Electrical Conductivity (Non		1	μS/cm	182	237	346	356	295
Compensated)								
EA025: Total Suspended Solids dried		-		40	•	44		
Suspended Solids (SS)		5	mg/L	13	6	11	8	36
ED093F: SAR and Hardness Calculat		4	,	-				
Total Hardness as CaCO3		1	mg/L	22	24	55	66	24
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.83	0.71	0.78	0.38	1.13
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.002	0.002	<0.001
Cadmium	7440-43-9		mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	0.003	0.002	0.002
Copper	7440-50-8	0.001	mg/L	0.006	0.002	0.008	0.009	0.003
Nickel	7440-02-0	0.001	mg/L	0.002	0.001	0.002	0.001	0.001
Lead	7439-92-1	0.001	mg/L	0.001	<0.001	<0.001	<0.001	0.001
Zinc	7440-66-6	0.005	mg/L	0.025	0.006	0.041	0.025	0.045
Iron	7439-89-6	0.05	mg/L	0.50	0.45	0.59	0.22	1.01
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.04	0.06	0.08	<0.01
EK057G: Nitrite as N by Discrete Ana	alvser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete An			-					
Nitrate as N	14797-55-8	0.01	mg/L	0.18	<0.01	0.98	1.51	1.03
EK059G: Nitrite plus Nitrate as N (NC								1
Nitrite + Nitrate as N		0.01	mg/L	0.18	<0.01	0.98	1.51	1.03
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser		, J					
Total Kjeldahl Nitrogen by I	Allalysel	0.1	mg/L	0.9	0.8	0.7	1.4	1.3
	NOw his Birms to the		1119/1	0.0	V.U	V.1	17	1.0
EK062G: Total Nitrogen as N (TKN + ` Total Nitrogen as N	NOX) by Discrete Ar	nalyser 0.1	mg/L	1.1	0.8	1.7	2.9	2.3
I ULAI NILTUURII AS N		U. I	IIIg/L	1.1	U.8	1.7	2.9	2.3

Page : 4 of 6
Work Order : EW2000648

Client : WOLLONGONG CASH CLIENTS
Project : Culburra Beach and Callala Bay

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	Α	В	С	D	G
	Cli	ent sampli	ing date / time	09-Feb-2020 18:05	09-Feb-2020 18:12	09-Feb-2020 18:25	09-Feb-2020 18:38	09-Feb-2020 17:30
Compound	CAS Number	LOR	Unit	EW2000648-001	EW2000648-002	EW2000648-003	EW2000648-004	EW2000648-005
				Result	Result	Result	Result	Result
EK067G: Total Phosphorus as P by D	Discrete Analyser - C	ontinued						
Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.09	0.15	<0.01
EK071G: Reactive Phosphorus as P	by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.04	0.10	<0.01
MW006: Faecal Coliforms & E.coli by	MF							
Faecal Coliforms		1	CFU/100mL	3200	10000	8300	8500	3200
MW023: Enterococci by Membrane F	iltration							
Enterococci		1	CFU/100mL	2000	58	~24000	~26000	4200

Page : 5 of 6
Work Order : EW2000648

Client : WOLLONGONG CASH CLIENTS
Project : Culburra Beach and Callala Bay

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Н	 	
	CI	ient sampli	ng date / time	09-Feb-2020 18:50	 	
Compound	CAS Number	LOR	Unit	EW2000648-006	 	
				Result	 	
EA005FD: Field pH						
рН		0.1	pH Unit	7.1	 	
EA010FD: Field Conductivity						
Electrical Conductivity (Non Compensated)		1	μS/cm	296	 	
EA025: Total Suspended Solids dried a	t 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	8	 	
ED093F: SAR and Hardness Calculation	ns					
Total Hardness as CaCO3		1	mg/L	54	 	
EG020T: Total Metals by ICP-MS			-			
Aluminium	7429-90-5	0.01	mg/L	0.37	 	
Arsenic	7440-38-2	0.001	mg/L	0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.002	 	
Copper	7440-50-8	0.001	mg/L	0.015	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.024	 	
Iron	7439-89-6	0.05	mg/L	0.32	 	
EG035T: Total Recoverable Mercury by	y FIMS					
Mercury	7439-97-6	0.0001	mg/L	0.0001	 	
EK055G: Ammonia as N by Discrete An	nalyser					
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	 	
EK057G: Nitrite as N by Discrete Analy	/ser					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analy	vser					
Nitrate as N	14797-55-8	0.01	mg/L	1.73	 	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser _				
Nitrite + Nitrate as N		0.01	mg/L	1.73	 	
EK061G: Total Kjeldahl Nitrogen By Dis	screte Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	 	
EK062G: Total Nitrogen as N (TKN + NO	Ox) by Discrete Ar	alvser				1
^ Total Nitrogen as N	JX) by Discrete Al	0.1	mg/L	2.7	 	
EK067G: Total Phosphorus as P by Dis	crete Analyser					
EROUPS: Total Phosphorus as P by Dis	Crete Analysei					

Page : 6 of 6
Work Order : EW2000648

Client : WOLLONGONG CASH CLIENTS
Project : Culburra Beach and Callala Bay

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		Н	 	 	
	Clie	nt sampli	ing date / time	09-Feb-2020 18:50	 	
Compound	CAS Number	LOR	Unit	EW2000648-006	 	
				Result	 	
EK067G: Total Phosphorus as P by Dis	screte Analyser - Co	ntinued				
Total Phosphorus as P		0.01	mg/L	0.12	 	
EK071G: Reactive Phosphorus as P by	discrete analyser					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.06	 	
MW006: Faecal Coliforms & E.coli by M	NF					
Faecal Coliforms		1	CFU/100mL	~14000	 	
MW023: Enterococci by Membrane Filt	ration					
Enterococci		1	CFU/100mL	7100	 	

Work Order : **EW2000673** Page : 1 of 4

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Aneta Prosaroski

Address : Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

· 18-Feb-2020 10:28

Australia NSW Australia

Telephone : +61 2 4225 3125

Project : Culburra Beach URA Date Samples Received : 10-Feb-2020 15:13

Order number : N25405 Date Analysis Commenced : 10-Feb-2020

C-O-C number : ---- Issue Date
Sampler James Harris

Site :----

Quote number : EN/333

No. of samples received : 2

No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW
Glenn Davies Environmental Services Representative Laboratory - Wollongong, NSW
Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Tony DeSouza Senior Microbiologist Sydney Microbiology, Smithfield, NSW

Page : 2 of 4
Work Order : EW2000673

Client : WOLLONGONG CASH CLIENTS

Project : Culburra Beach URA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

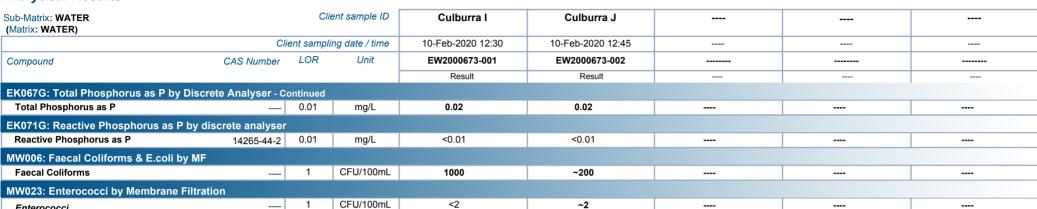
- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu
- pH and electrical conductivity data supplied by ALS Wollongong.
- pH and electrical conductivity test completed on day of receipt.
- Sampling completed by client
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4
Work Order : EW2000673

Client : WOLLONGONG CASH CLIENTS

Project : Culburra Beach URA

ub-Matrix: WATER Matrix: WATER)	Client sample ID		Culburra I	Culburra J	 		
·	CI	lient sampli	ng date / time	10-Feb-2020 12:30	10-Feb-2020 12:45	 	
ompound	CAS Number	LOR	Unit	EW2000673-001	EW2000673-002	 	
				Result	Result	 	
A005FD: Field pH							
рН		0.1	pH Unit	5.2	4.6	 	
A010FD: Field Conductivity							
Electrical Conductivity (Non		1	μS/cm	78	153	 	
Compensated)							
A025: Total Suspended Solids drie	ed at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	10	11	 	
0093F: SAR and Hardness Calcula	ntions						
Fotal Hardness as CaCO3		1	mg/L	4	13	 	
G020T: Total Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	1.06	0.88	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3		mg/L	<0.001	0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	 	
_ead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	0.011	 	
ron	7439-89-6	0.05	mg/L	0.53	0.61	 	
G035T: Total Recoverable Mercur	v bv FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
(055G: Ammonia as N by Discrete							
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.02	 	
(057G: Nitrite as N by Discrete Ar							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
K058G: Nitrate as N by Discrete A			J				
Nitrate as N	14797-55-8	0.01	mg/L	0.08	0.02	 	
K059G: Nitrite plus Nitrate as N (N			9				
Nitrite + Nitrate as N	OX) by discrete Ana	0.01	mg/L	0.08	0.02	 	
		0.01	g/ L	0.00	V.V.	 	
(061G: Total Kjeldahl Nitrogen By Fotal Kjeldahl Nitrogen as N		0.1	mg/L	0.5	1.0		I
			mg/L	U.0	1.0	 	
K062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ar				4.0		I
Total Nitrogen as N		0.1	mg/L	0.6	1.0	 	


Page : 4 of 4 Work Order EW2000673

Client : WOLLONGONG CASH CLIENTS

Project Culburra Beach URA

Analytical Results

Enterococci

~2

<2

Page

Work Order : **EW2001216**

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Aneta Prosaroski

Address : Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

: 1 of 6

Australia NSW Australia
Telephone : --- Telephone : +61 2 4225 3125

Project : Culburra Beach 25405 Date Samples Received : 05-Mar-2020 12:09

 Order number
 : -- Date Analysis Commenced
 : 06-Mar-2020

 C-O-C number
 : -- Issue Date
 : 13-Mar-2020 10:27

Sampler James Harris

Site : ----

Quote number : EN/333

No. of samples received : 8

No. of samples analysed : 8

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW	
Tony DeSouza	Senior Microbiologist	Sydney Microbiology, Smithfield, NSW	
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW	

Page : 2 of 6
Work Order : EW2001216

Client : WOLLONGONG CASH CLIENTS

Project : Culburra Beach 25405

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

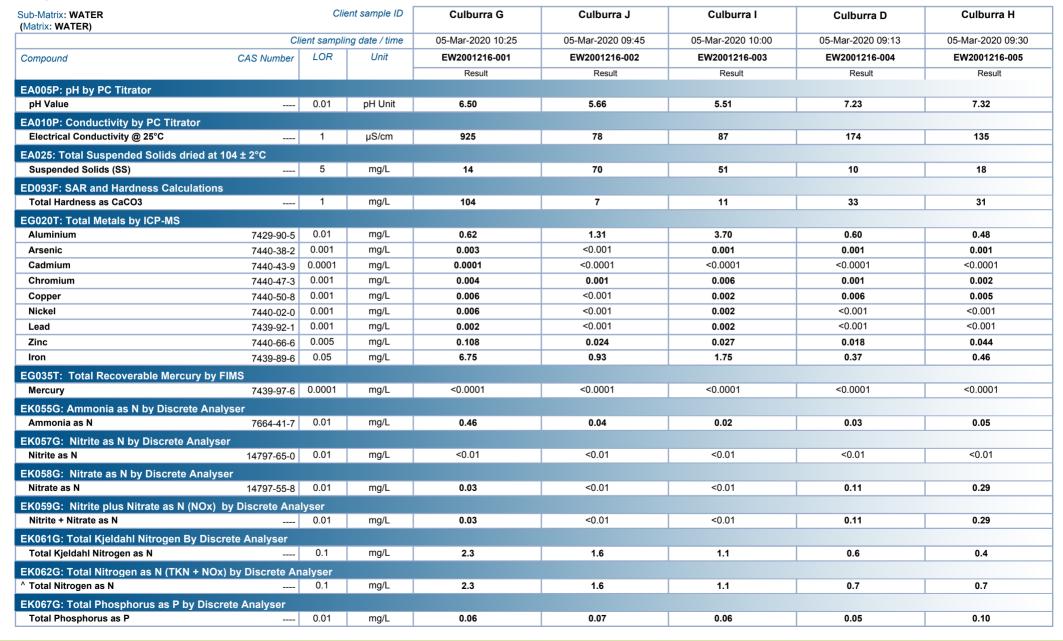
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

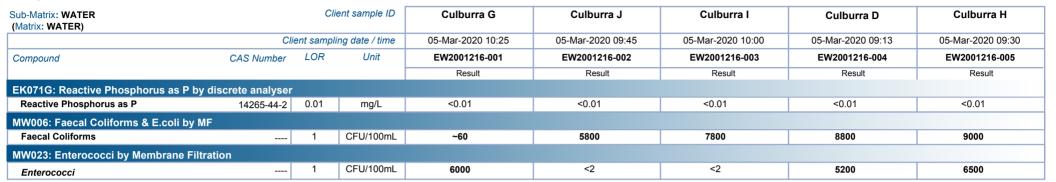
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu
- According to ALS work instruction for membrane filtration, the suggested volume for filtration of non treated / non-drinking water starts from 10mL or 50mL if the sample is turbid. A result of <10 or <2cfu/100mL is reported when there is no target organism growth from a volume of 10 or 50mL respectively.
- Membrane filtration results for MW006 Nos 1 7 and 8 are reported as an estimate (~) due to the presence of many non-target organism colonies that may have inhibited the growth of the target organisms on the filter membrane. It may be informative to record this fact.
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6
Work Order : EW2001216

Client : WOLLONGONG CASH CLIENTS

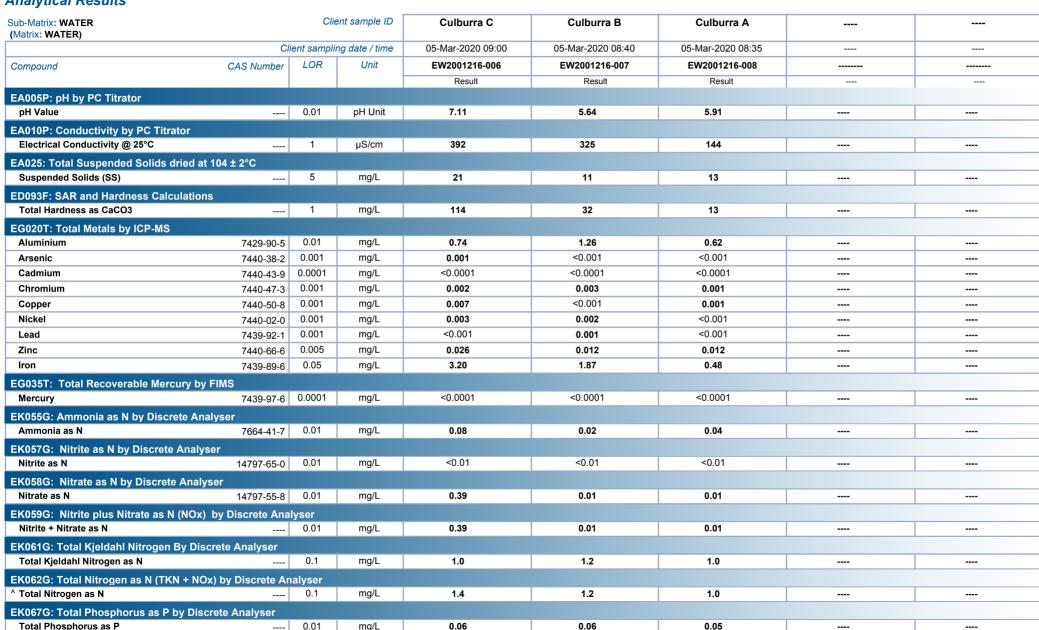
Project : Culburra Beach 25405



Page : 4 of 6
Work Order : EW2001216

Client : WOLLONGONG CASH CLIENTS

Project : Culburra Beach 25405



Page : 5 of 6 Work Order EW2001216

Client : WOLLONGONG CASH CLIENTS

Culburra Beach 25405 **Project**

Analytical Results

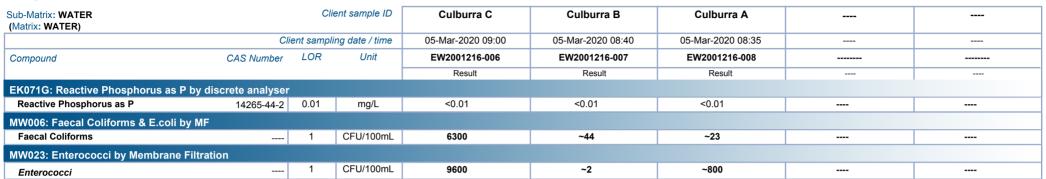
0.01

mg/L

0.06

0.06

0.05



Page : 6 of 6
Work Order : EW2001216

Client : WOLLONGONG CASH CLIENTS

Project : Culburra Beach 25405

CERTIFICATE OF ANALYSIS

Work Order : **EW2003204** Page : 1 of 6

Client : WOLLONGONG CASH CLIENTS Laboratory : Environmental Division NSW South Coast

Contact : James Harris Contact : Aneta Prosaroski

Address : 1/19 Ralph Black Dr, North Wollongong 2500

4/13 Geary PI, North Nowra 2541

Australia NSW Australia

Telephone : ---- Telephone : +61 2 4225 3125

Project : N25405 Date Samples Received : 14-Jul-2020 14:00

Project : N25405 Date Samples Received : 14-Jul-2020 14:06
Order number Date Analysis Commenced : 15 Jul 2020

 Order number
 : -- Date Analysis Commenced
 : 15-Jul-2020

 C-O-C number
 : -- Issue Date
 : 21-Jul-2020 14:17

Sampler James Harris

Site : ----

Quote number : EN/333

No. of samples received : 7
No. of samples analysed : 7

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Somlok Chai	Microbiologist	Sydney Microbiology, Smithfield, NSW

Page : 2 of 6
Work Order : EW2003204

Client : WOLLONGONG CASH CLIENTS

Project : N25405

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu.
- EG035: Poor matrix spike recovery was obtained for Mercury on sample EW2003204 # 2. Confirmed by re-analysis.
- MW023 is ALS's internal code and is equivalent to AS4276.9.
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6
Work Order : EW2003204

Client : WOLLONGONG CASH CLIENTS

EK061G: Total Kjeldahl Nitrogen By Discrete Analyser

EK067G: Total Phosphorus as P by Discrete Analyser

EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser

0.1

0.01

mg/L

mg/L

mg/L

1.6

2.1


0.19

Total Kjeldahl Nitrogen as N

^ Total Nitrogen as N

Total Phosphorus as P

Project : N25405

1.0

1.1

0.22

1.1

2.6

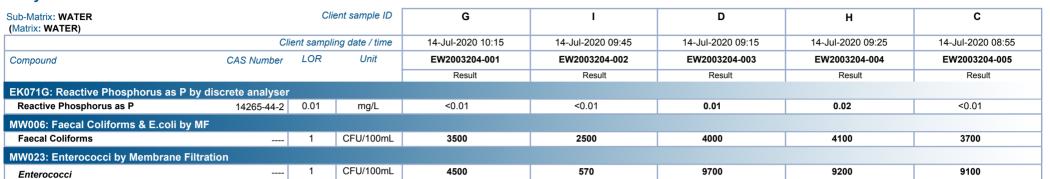
0.14

1.0

1.4

0.20

0.6


1.0

0.09

Page : 4 of 6
Work Order : EW2003204

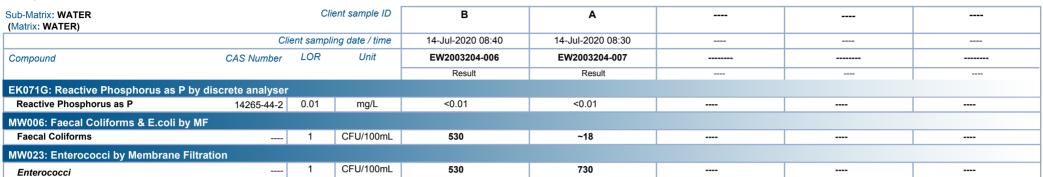
Client : WOLLONGONG CASH CLIENTS

Project : N25405

Page : 5 of 6
Work Order : EW2003204

Client : WOLLONGONG CASH CLIENTS

Project : N25405



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	В	A	 	
·	Cli	ient sampli	ng date / time	14-Jul-2020 08:40	14-Jul-2020 08:30	 	
Compound	CAS Number	LOR	Unit	EW2003204-006	EW2003204-007	 	
				Result	Result	 	
A005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.31	6.38	 	
A010P: Conductivity by PC Titrato	r						
Electrical Conductivity @ 25°C		1	μS/cm	101	169	 	
A025: Total Suspended Solids drie	ed at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	12	19	 	
D093F: SAR and Hardness Calcula	ations						
Total Hardness as CaCO3		1	mg/L	11	11	 	
EG020T: Total Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	2.52	2.81	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.003	0.004	 	
Copper	7440-50-8	0.001	mg/L	0.005	0.003	 	
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001	 	
Lead	7439-92-1	0.001	mg/L	0.003	0.003	 	
Zinc	7440-66-6	0.005	mg/L	0.007	0.006	 	
Iron	7439-89-6	0.05	mg/L	1.74	1.61	 	
G035T: Total Recoverable Mercur	y by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
K055G: Ammonia as N by Discrete	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	 	
K057G: Nitrite as N by Discrete A	nalvser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
K058G: Nitrate as N by Discrete A							
Nitrate as N	14797-55-8	0.01	mg/L	0.23	0.06	 	
EK059G: Nitrite plus Nitrate as N (N			3				
Nitrite + Nitrate as N	lok, by Discrete And	0.01	mg/L	0.23	0.06	 	
K061G: Total Kjeldahl Nitrogen By	Discrete Apalyses						
Total Kjeldahl Nitrogen By	Discrete Analyser	0.1	mg/L	1.1	1.4	 	
			mg/L	1.1	1.4	 	
K062G: Total Nitrogen as N (TKN + Total Nitrogen as N		0.1	mg/l	1.3	1.5	I	T
		U. I	mg/L	1.3	1.0	 	
K067G: Total Phosphorus as P by		0.01		0.00	0.00		
Total Phosphorus as P		0.01	mg/L	0.09	0.06	 	

Page : 6 of 6
Work Order : EW2003204

Client : WOLLONGONG CASH CLIENTS

Project : N25405

24 Annexure N: Council Estuary Water Quality Data

Location		TN (n	ng/L)	TP (n	ng/L)	TSS (mg/L)		Faecal Coliforms (CFU/100mL)		Aluminium (mg/L)	
		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	E-148	0.313	0.275	0.038	0.041	43.4	34.3	86	216	na	na
	E-149	0.346	0.281	0.039	0.019	24.1	15.4	278	664	na	na
	E-158	0.285	0.075	0.019	0.001	na	na	96	110	na	na
	E-159	0.505	0.354	0.084	0.114	14.5	9.6	166	270	na	na
	E-275	0.455	0.352	0.305	0.911	41.9	19.6	122	509	na	na
	E-292	0.473	na	0.044	na	na	na	257	697	na	na
	E-294	0.329	0.305	0.051	0.082	44.5	35.7	90	379	na	na
	E-295	0.310	0.327	0.035	0.031	52.0	19.0	250	1733	0.2	na
Shoalhaven River	E-341	0.745	0.555	0.070	0.016	39.3	12.8	92	224	na	na
Sites	E-345	0.220	na	0.037	na	100.0	na	175	231	na	na
	E-346	0.510	0.420	0.170	0.330	34.7	14.0	515	2015	na	na
	E-347	na	na	na	na	na	na	62	111	na	na
	E-548	0.274	0.288	0.034	0.033	42.9	23.4	43	185	na	na
	E-619	0.450	0.566	0.038	0.034	38.0	21.2	74	190	na	na
	E-7	1.899	1.574	0.822	1.187	22.0	11.5	205	500	na	na
	E-8	0.395	0.271	0.072	0.066	31.6	17.5	268	505	na	na
	E-9	0.395	0.283	0.050	0.034	29.8	16.5	139	404	na	na
	Overall	0.394	0.508	0.083	0.317	36.5	25.1	178	824	0.20	na
	E-452	2.10	na	0.210	na	na	na	119	120	0.47	na
	E-453	0.592	0.654	0.047	0.053	na	na	138	526	0.22	na
	E-454	0.326	0.291	0.034	0.025	na	na	14	40	0.43	na
Crookhaven River	E-455	0.500	na	0.050	na	na	na	19	74	na	na
Sites	E-456	0.600	na	0.050	na	na	na	52	225	4.08	na
	E-457	0.500	na	0.060	na	na	na	60	275	0.67	na
	E-777	na	na	na	Na	na	na	49	156	na	na
	Overall	0.568	0.626	0.047	0.051	na	na	64	265	1.17	1.46
Entire Estua	ıry	0.422	0.531	0.077	0.292	36.5	25.1	150	731	1.01	1.38

25 Annexure O: Estuary Water Quality Laboratory Data

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 227607

Client Details	
Client	Martens & Associates Pty Ltd
Attention	D Dhiacou, R Kightley, Andrew Norris
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: Culburra
Number of Samples	5 Water
Date samples received	03/10/2019
Date completed instructions received	03/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	11/10/2019				
Date of Issue	11/10/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/10/2019	03/10/2019	03/10/2019	03/10/2019	03/10/2019
Date analysed	-	03/10/2019	03/10/2019	03/10/2019	03/10/2019	03/10/2019
рН	pH Units	7.7	7.9	7.9	8.0	8.0
Electrical Conductivity	μS/cm	50,000	47,000	47,000	48,000	46,000
Total Dissolved Solids (grav)	mg/L	39,000	40,000	39,000	40,000	40,000
NOx as N in water	mg/L	0.01	<0.005	<0.005	<0.005	0.01
Ammonia as N in water	mg/L	0.019	0.015	0.014	0.011	0.016
Total Nitrogen in water	mg/L	0.3	0.1	0.1	0.5	0.1
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrate as N in water	mg/L	0.006	<0.005	<0.005	<0.005	0.007

Ion Balance						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/10/2019	03/10/2019	03/10/2019	03/10/2019	03/10/2019
Date analysed	-	03/10/2019	03/10/2019	03/10/2019	03/10/2019	03/10/2019
Calcium - Dissolved	mg/L	360	370	370	380	380
Potassium - Dissolved	mg/L	410	410	390	410	410
Sodium - Dissolved	mg/L	11,000	12,000	11,000	12,000	12,000
Magnesium - Dissolved	mg/L	1,300	1,300	1,200	1,400	1,300
Hardness	mgCaCO 3 /L	6,300	6,400	6,000	6,600	6,400
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	120	130	120	120	130
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	120	130	120	120	130
Sulphate, SO4	mg/L	2,500	2,500	2,400	2,500	2,500
Chloride, Cl	mg/L	18,000	19,000	18,000	19,000	19,000
Ionic Balance	%	5.0	5.0	4.0	6.0	6.0

Metals in Waters - Acid extractable						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2019	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Date analysed	-	04/10/2019	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Phosphorus - Total	mg/L	0.05	<0.05	<0.05	<0.05	<0.05

All metals in water-dissolved						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2019	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Date analysed	-	04/10/2019	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Aluminium-Dissolved	μg/L	10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	1	2	2	2	1
Boron-Dissolved	μg/L	4,600	4,600	4,700	4,700	4,700
Barium-Dissolved	μg/L	8	8	8	7	9
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	24	11	6	10	10
Molybdenum-Dissolved	μg/L	12	12	12	12	12
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	7,800	7,900	7,800	7,400	7,400
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	1	<1	1	1	1

Metals in Water - Dissolved						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date digested	-	10/10/2019	10/10/2019	10/10/2019	10/10/2019	10/10/2019
Date analysed	-	10/10/2019	10/10/2019	10/10/2019	10/10/2019	10/10/2019
Silicon*- Dissolved	mg/L	0.6	0.4	0.3	0.3	0.4

Microbiologocal Testing						
Our Reference		227607-1	227607-2	227607-3	227607-4	227607-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		02/10/2019	02/10/2019	02/10/2019	02/10/2019	02/10/2019
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	04/10/2019	04/10/2019	04/10/2019	04/10/2019	04/10/2019
E. coli	cfu/100mL	1 A	<1	1 A	<10	<1
Faecal Coliforms	cfu/100mL	1 A	<1	1 A	<10	<1

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	227607-5
Date prepared	-			03/10/2019	1	03/10/2019	03/10/2019		03/10/2019	03/10/2019
Date analysed	-			03/10/2019	1	03/10/2019	03/10/2019		03/10/2019	03/10/2019
pH	pH Units		Inorg-001	[NT]	1	7.7	[NT]		102	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	50000	[NT]		93	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	39000	39000	0	103	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.01	[NT]		103	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.019	[NT]		104	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.3	[NT]		102	99
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	[NT]		110	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.006	[NT]		107	[NT]

QUALITY CO	NTROL: Mis	cellaneou	is Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				4	03/10/2019	03/10/2019		[NT]	
Date analysed	-				4	03/10/2019	03/10/2019		[NT]	
рН	pH Units		Inorg-001		4	8.0	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002		4	48000	[NT]		[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018		4	40000	[NT]		[NT]	
NOx as N in water	mg/L	0.005	Inorg-055		4	<0.005	[NT]		[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057		4	0.011	[NT]		[NT]	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		4	0.5	0.5	0	[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060		4	<0.005	[NT]		[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055		4	<0.005	[NT]		[NT]	

QUALITY CO	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				5	03/10/2019	03/10/2019		[NT]		
Date analysed	-				5	03/10/2019	03/10/2019		[NT]		
рН	pH Units		Inorg-001		5	8.0	7.8	3	[NT]		
Electrical Conductivity	μS/cm	1	Inorg-002		5	46000	47000	2	[NT]		
Total Dissolved Solids (grav)	mg/L	5	Inorg-018		5	40000	[NT]		[NT]		
NOx as N in water	mg/L	0.005	Inorg-055		5	0.01	[NT]		[NT]		
Ammonia as N in water	mg/L	0.005	Inorg-057		5	0.016	[NT]		[NT]		
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		5	0.1	[NT]		[NT]		
Phosphate as P in water	mg/L	0.005	Inorg-060		5	<0.005	[NT]		[NT]		
Nitrate as N in water	mg/L	0.005	Inorg-055		5	0.007	[NT]		[NT]		

QUALITY CONTROL: Ion Balance						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	227607-2	
Date prepared	-			03/10/2019	1	03/10/2019	03/10/2019		03/10/2019	03/10/2019	
Date analysed	-			03/10/2019	1	03/10/2019	03/10/2019		03/10/2019	03/10/2019	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	360	360	0	96	#	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	410	400	2	89	#	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	11000	11000	0	85	#	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1300	1300	0	97	#	
Hardness	mgCaCO 3 /L	3		[NT]	1	6300	6400	2	[NT]		
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]		
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	120	[NT]		[NT]		
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]		
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	120	[NT]		111		
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	2500	[NT]		87		
Chloride, Cl	mg/L	1	Inorg-081	<1	1	18000	[NT]		84		
Ionic Balance	%		Inorg-040	[NT]	1	5.0	[NT]		[NT]		

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		ecovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	227607-5
Date prepared	-			[NT]	4	03/10/2019	03/10/2019			03/10/2019
Date analysed	-			[NT]	4	03/10/2019	03/10/2019			03/10/2019
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	380	[NT]			[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	410	[NT]			[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	12000	[NT]			[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	1400	[NT]			[NT]
Hardness	mgCaCO 3 /L	3		[NT]	4	6600	[NT]			[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	<5	[NT]			[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	120	[NT]			[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	<5	[NT]			[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	120	[NT]			[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	4	2500	2500	0		#
Chloride, Cl	mg/L	1	Inorg-081	[NT]	4	19000	19000	0		#
Ionic Balance	%		Inorg-040	[NT]	4	6.0	[NT]			[NT]

QUAL	ITY CONTRO	L: Ion Ba	lance			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	5	03/10/2019	03/10/2019			
Date analysed	-			[NT]	5	03/10/2019	03/10/2019			
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	380	[NT]			
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	410	[NT]			
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	12000	[NT]			
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	1300	[NT]			
Hardness	mgCaCO 3 /L	3		[NT]	5	6400	[NT]			
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	<5	0		
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	130	120	8		
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	<5	0		
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	130	120	8		
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	5	2500	[NT]			
Chloride, Cl	mg/L	1	Inorg-081	[NT]	5	19000	[NT]			
Ionic Balance	%		Inorg-040	[NT]	5	6.0	[NT]			

QUALITY CONTRO	QUALITY CONTROL: Metals in Waters - Acid extractable						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	227607-2
Date prepared	-			04/10/2019	1	04/10/2019	04/10/2019		04/10/2019	04/10/2019
Date analysed	-			04/10/2019	1	04/10/2019	04/10/2019		04/10/2019	04/10/2019
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.05	<0.05	0	104	115

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	227607-4	
Date prepared	-			04/10/2019	3	04/10/2019	04/10/2019		04/10/2019	04/10/2019	
Date analysed	-			04/10/2019	3	04/10/2019	04/10/2019		04/10/2019	04/10/2019	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	3	<10	<10	0	103	115	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	3	2	2	0	102	103	
Boron-Dissolved	μg/L	20	Metals-022	<20	3	4700	4700	0	108	#	
Barium-Dissolved	μg/L	1	Metals-022	<1	3	8	8	0	99	101	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	3	<0.5	<0.5	0	106	93	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	3	<0.1	<0.1	0	102	93	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	104	94	
Chromium-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	100	98	
Copper-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	102	83	
Iron-Dissolved	μg/L	10	Metals-022	<10	3	<10	<10	0	108	104	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	3	<0.05	[NT]		101	[NT]	
Manganese-Dissolved	μg/L	5	Metals-022	<5	3	6	6	0	100	105	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	3	12	12	0	101	116	
Nickel-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	102	86	
Lead-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	105	94	
Selenium-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	100	94	
Strontium-Dissolved	μg/L	1	Metals-022	<1	3	7800	7600	3	102	#	
Titanium-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	104	114	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	98	102	
Zinc-Dissolved	μg/L	1	Metals-022	<1	3	1	1	0	102	90	

QUALITY CO	ONTROL: All m	etals in w	ater-dissolved	QUALITY CONTROL: All metals in water-dissolved						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	5	04/10/2019	04/10/2019			
Date analysed	-			[NT]	5	04/10/2019	04/10/2019			
Aluminium-Dissolved	μg/L	10	Metals-022	[NT]	5	<10	[NT]			
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	5	1	[NT]			
Boron-Dissolved	μg/L	20	Metals-022	[NT]	5	4700	[NT]			
Barium-Dissolved	μg/L	1	Metals-022	[NT]	5	9	[NT]			
Beryllium-Dissolved	μg/L	0.5	Metals-022	[NT]	5	<0.5	[NT]			
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	5	<0.1	[NT]			
Cobalt-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Copper-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Iron-Dissolved	μg/L	10	Metals-022	[NT]	5	<10	[NT]			
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	5	<0.05	<0.05	0		
Manganese-Dissolved	μg/L	5	Metals-022	[NT]	5	10	[NT]			
Molybdenum-Dissolved	μg/L	1	Metals-022	[NT]	5	12	[NT]			
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Lead-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Selenium-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Strontium-Dissolved	μg/L	1	Metals-022	[NT]	5	7400	[NT]			
Titanium-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Vanadium-Dissolved	μg/L	1	Metals-022	[NT]	5	<1	[NT]			
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	5	1	[NT]			

QUALITY CON	QUALITY CONTROL: Metals in Water - Dissolved								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	227607-4	
Date digested	-			10/10/2019	3	10/10/2019	10/10/2019		10/10/2019	10/10/2019	
Date analysed	-			10/10/2019	3	10/10/2019	10/10/2019		10/10/2019	10/10/2019	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	3	0.3	0.3	0	99	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contr	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Cuidelines recommend that Thermetelerant Coliform, Escapi Enterposes, & E. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 227607 Page | 17 of 18

R00

Report Comments

All metals in water-dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

ION_BALANCE:# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Faecal Coliform & E.Coli analysed by Sonic Food & Water Testing. Report No. W1921582 A: Approximate

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 227607 Page | 18 of 18 Revision No: R00

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 229288

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: Culburra
Number of Samples	5 Water
Date samples received	25/10/2019
Date completed instructions received	25/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	01/11/2019				
Date of Issue	12/11/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Jeremy Faircloth, Operations Manager, Sydney Loren Bardwell, Senior Chemist Nick Sarlamis, Inorganics Supervisor Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/10/2019	25/10/2019	25/10/2019	25/10/2019	25/10/2019
Date analysed	-	25/10/2019	25/10/2019	25/10/2019	25/10/2019	25/10/2019
рН	pH Units	7.8	7.8	7.8	8.1	7.8
Electrical Conductivity	μS/cm	52,000	52,000	51,000	51,000	52,000
Total Dissolved Solids (grav)	mg/L	38,000	38,000	37,000	37,000	37,000
NOx as N in water	mg/L	<0.025	<0.025	<0.025	<0.025	<0.025
Ammonia as N in water	mg/L	0.042	0.038	0.034	0.081	0.074
Total Nitrogen in water	mg/L	0.3	0.5	0.3	0.4	0.3
Phosphate as P in water	mg/L	<0.025	<0.025	<0.025	<0.025	<0.025
Nitrate as N in water	mg/L	<0.025	<0.025	<0.025	<0.025	<0.025

Ion Balance						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/10/2019	25/10/2019	29/10/2019	25/10/2019	25/10/2019
Date analysed	-	25/10/2019	25/10/2019	29/10/2019	25/10/2019	25/10/2019
Calcium - Dissolved	mg/L	340	340	340	330	350
Potassium - Dissolved	mg/L	380	380	380	380	380
Sodium - Dissolved	mg/L	11,000	10,000	11,000	11,000	10,000
Magnesium - Dissolved	mg/L	1,200	1,200	1,200	1,200	1,200
Hardness	mgCaCO 3 /L	5,900	5,700	6,000	5,800	5,700
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	120	120	190	120	120
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	120	120	190	120	120
Sulphate, SO4	mg/L	2,400	2,300	2,400	2,400	2,300
Chloride, Cl	mg/L	19,000	18,000	19,000	19,000	18,000
Ionic Balance	%	1.0	0	1.0	0	1.0

Metals in Waters - Acid extractable						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

All metals in water-dissolved						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	1	2	1	2	1
Boron-Dissolved	μg/L	4,400	4,300	4,400	4,300	4,300
Barium-Dissolved	μg/L	8	8	7	7	8
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	9	10	<5	7	<5
Molybdenum-Dissolved	μg/L	12	12	12	12	12
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	7,400	7,300	7,300	7,500	7,400
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	1	1	<1	2	<1
Zinc-Dissolved	μg/L	3	2	<1	1	1

Metals in Water - Dissolved						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date digested	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Silicon*- Dissolved	mg/L	0.6	0.4	0.4	<0.2	0.4

Microbiologocal Testing						
Our Reference		229288-1	229288-2	229288-3	229288-4	229288-5
Your Reference	UNITS	3365/WQ201	3365/WQ202	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		24/10/2019	24/10/2019	24/10/2019	24/10/2019	24/10/2019
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	26/10/2019	26/10/2019	26/10/2019	26/10/2019	26/10/2019
Faecal Coliforms	cfu/100mL	1A	10	<1	<1	6A

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 229288

Revision No: R00

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			25/10/2019	1	25/10/2019	25/10/2019		25/10/2019	
Date analysed	-			25/10/2019	1	25/10/2019	25/10/2019		25/10/2019	
рН	pH Units		Inorg-001	[NT]	1	7.8	[NT]		102	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	52000	[NT]		106	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	38000	38000	0	105	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.025	[NT]		98	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.042	[NT]		107	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.3	0.3	0	99	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.025	[NT]		112	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.025	[NT]		97	

QUALI ^T	QUALITY CONTROL: Ion Balance								Duplicate Spike Recover				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	229288-2			
Date prepared	-			25/10/2019	[NT]	[NT]	[NT]	[NT]	25/10/2019	25/10/2019			
Date analysed	-			25/10/2019	[NT]	[NT]	[NT]	[NT]	25/10/2019	25/10/2019			
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	91	[NT]			
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	88	[NT]			
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	86	[NT]			
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	90	[NT]			
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]			
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]			
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]			
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	98	[NT]			
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]	[NT]	[NT]	[NT]	88	#			
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]	[NT]	[NT]	[NT]	83	#			

QUALITY CONTRO		Duplicate				Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
Date analysed	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	97	

Envirolab Reference: 229288

Revision No: R00

QUALITY CC	NTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
Date analysed	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	104	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	110	
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	90	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	106	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	104	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	116	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	95	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Strontium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Fitanium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	

QUALITY CON	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	
Date analysed	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	0.6	0.6	0	97	

Envirolab Reference: 229288 Revision No: R00 Page | **13 of 16**

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

PQL raised for Nitrate, NOX, phosphate and ammonia due to high salinity of the samples requiring dilution.

Faecal coliforms analysed by Sonic, report W1923297

A = Approximate

Envirolab Reference: 229288 Page | 16 of 16 Revision No: R00

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 231980

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley, Andrew Norris
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: Culburra
Number of Samples	5 Water
Date samples received	29/11/2019
Date completed instructions received	29/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details								
Date results requested by	06/12/2019							
Date of Issue	06/12/2019							
NATA Accreditation Number 2901. T	NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Nick Sarlamis, Inorganics Supervisor Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
рН	pH Units	5.4	6.6	4.8	7.2	6.0
Electrical Conductivity	μS/cm	2,600	2,300	190	2,100	17,000
Total Dissolved Solids (grav)	mg/L	1,600	1,300	270	1,400	9,400
NOx as N in water	mg/L	0.01	0.02	0.1	0.1	0.01
Ammonia as N in water	mg/L	0.15	0.038	0.024	0.51	0.043
Total Nitrogen in water	mg/L	0.4	0.1	0.3	0.7	<0.1
Phosphate as P in water	mg/L	0.014	0.040	<0.005	0.058	<0.005
Nitrate as N in water	mg/L	0.01	0.01	0.12	0.11	0.01

Ion Balance						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Calcium - Dissolved	mg/L	5.4	22	<0.5	81	150
Potassium - Dissolved	mg/L	2.3	2.8	<0.5	5.6	6.6
Sodium - Dissolved	mg/L	700	530	37	450	3,300
Magnesium - Dissolved	mg/L	37	32	0.8	47	700
Hardness	mgCaCO 3 /L	160	190	3.3	400	3,300
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	17	200	29	480	58
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	17	200	29	480	58
Sulphate, SO4	mg/L	210	160	17	210	730
Chloride, Cl	mg/L	750	590	38	340	5,800
Ionic Balance	%	13	6.0	-9.0	8.0	7.0

Metals in Waters - Acid extractable						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/12/2019	03/12/2019	03/12/2019	03/12/2019	03/12/2019
Date analysed	-	03/12/2019	03/12/2019	03/12/2019	03/12/2019	03/12/2019
Phosphorus - Total	mg/L	0.1	0.4	0.2	0.06	<0.05

All metals in water-dissolved						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	02/12/2019	02/12/2019	02/12/2019	02/12/2019	02/12/2019
Date analysed	-	02/12/2019	02/12/2019	02/12/2019	02/12/2019	02/12/2019
Aluminium-Dissolved	μg/L	230	<10	30	<10	60
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Boron-Dissolved	μg/L	200	200	80	200	100
Barium-Dissolved	μg/L	100	50	9	30	27
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	2
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	0.5
Cobalt-Dissolved	μg/L	23	14	14 <1		110
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	5	<1	<1	1	3
Iron-Dissolved	μg/L	1,500	31	12	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	470	1,100	<5	240	1,700
Molybdenum-Dissolved	μg/L	<1	<1	<1	<1	<1
Nickel-Dissolved	μg/L	20	9	<1	4	72
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	150	180	2.4	2,800	1,600
Titanium-Dissolved	μg/L	<1	1.6	1.1	<1	<1
Vanadium-Dissolved	μg/L	2	2	3	2	1
Zinc-Dissolved	μg/L	81	27	9	18	230

Metals in Water - Dissolved						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date digested	-	02/12/2019	02/12/2019	02/12/2019	02/12/2019	02/12/2019
Date analysed	-	02/12/2019	02/12/2019	02/12/2019	02/12/2019	02/12/2019
Silicon*- Dissolved	mg/L	26	21	29	15	18

Microbiologocal Testing						
Our Reference		231980-1	231980-2	231980-3	231980-4	231980-5
Your Reference	UNITS	3365/BH01	3365/MB403B	3365/BH02	3365/MB404	3365/BH06
Date Sampled		28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	30/11/2019	30/11/2019	30/11/2019	30/11/2019	30/11/2019
Faecal Coliforms	cfu/100mL	<10	<20 MPN/100mL	<20 MPN/100mL	<10	<1
E. coli	cfu/100mL	<10	<20 MPN/100mL	<20 MPN/100mL	<10	<1

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 231980

Revision No: R00

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	231980-2
Date prepared	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
рН	pH Units		Inorg-001	[NT]	1	5.4	5.4	0	101	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	2600	2800	7	102	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	1600	[NT]		108	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.01	0.01	0	107	112
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.15	0.14	7	95	91
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.4	0.4	0	109	93
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.014	0.015	7	103	110
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.01	0.01	0	105	112

QUAL	ITY CONTRO	L: Ion Ba	lance		Duplicate S _l					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	231980-2
Date prepared	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	5.4	[NT]		107	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	2.3	[NT]		101	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	700	[NT]		102	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	37	[NT]		108	[NT]
Hardness	mgCaCO 3 /L	3		[NT]	1	160	[NT]		[NT]	[NT]
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	17	17	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	17	17	0	98	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	210	210	0	119	#
Chloride, Cl	mg/L	1	Inorg-081	<1	1	750	750	0	117	#
Ionic Balance	%		Inorg-040	[NT]	1	13	[NT]		[NT]	[NT]

QUALITY CONTRO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			03/12/2019	[NT]	[NT]		[NT]	03/12/2019	
Date analysed	-			03/12/2019	[NT]	[NT]		[NT]	03/12/2019	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	108	[NT]

Envirolab Reference: 231980 Page | 11 of 16 Revision No: R00

QUALITY CON	ITROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			02/12/2019	1	02/12/2019	02/12/2019		02/12/2019	
Date analysed	-			02/12/2019	1	02/12/2019	02/12/2019		02/12/2019	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	230	220	4	105	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	100	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	200	200	0	104	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	100	99	1	104	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	103	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	94	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	23	22	4	102	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	5	5	0	101	
ron-Dissolved	μg/L	10	Metals-022	<10	1	1500	1500	0	99	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	470	460	2	97	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	20	19	5	94	
_ead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	105	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	150	140	7	98	
Fitanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	100	
/anadium-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	94	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	81	84	4	100	

QUALITY CONTROL: Metals in Water - Dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			02/12/2019	[NT]		[NT]	[NT]	02/12/2019	[NT]
Date analysed	-			02/12/2019	[NT]		[NT]	[NT]	02/12/2019	[NT]
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	[NT]		[NT]	[NT]	93	[NT]

Envirolab Reference: 231980

Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample) This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab

Note: there is a possibility some elements may be underestimated.

Faecal Coliform & E.Coli analysed by Sonic Food & Water Testing. Report No's W1926351 & W1926350 Sample 2 and 3 reported as MPN/100mL

pH has exceeded the recommended technical holding times, Envirolab Group form 347 "Recommended Preservation and Holding Times" can be provided on request (available on the Envirolab website)

TDS value may be exagerated for sample #3 due to colloidal matter passing through the filter.

Envirolab Reference: 231980 Page | 16 of 16 Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

INTERIM REPORT 234262

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: West Culburra: Mixed Use Subdivision
Number of Samples	5 Water
Date samples received	10/01/2020
Date completed instructions received	10/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	17/01/2020					
Interim Report Date	17/01/2020					
NATA Accreditation Number 2901.	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISC	0/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Miscellaneous Inorganics						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	10/01/2020	10/01/2020	10/01/2020	10/01/2020	10/01/2020
Date analysed	-	10/01/2020	10/01/2020	10/01/2020	10/01/2020	10/01/2020
рН	pH Units	7.7	7.9	8.0	8.1	7.9
Electrical Conductivity	μS/cm	53,000	52,000	51,000	51,000	52,000
Total Dissolved Solids (grav)	mg/L	42,000	41,000	40,000	41,000	42,000
NOx as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	0.009	0.006	0.018	0.013	0.005
Total Nitrogen in water	mg/L	0.8	0.5	0.2	0.4	0.2
Phosphate as P in water	mg/L	0.010	<0.005	0.01	0.008	<0.005
Nitrate as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

lon Balance						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	10/01/2020	10/01/2020	10/01/2020	10/01/2020	10/01/2020
Date analysed	-	10/01/2020	10/01/2020	10/01/2020	10/01/2020	10/01/2020
Calcium - Dissolved	mg/L	410	400	390	390	400
Potassium - Dissolved	mg/L	430	420	400	410	420
Sodium - Dissolved	mg/L	11,000	11,000	11,000	11,000	10,000
Magnesium - Dissolved	mg/L	1,400	1,400	1,300	1,300	1,300
Hardness	mgCaCO 3 /L	6,900	6,800	6,500	6,400	6,500
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	130	120	120	120	120
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	130	120	120	120	120
Sulphate, SO4	mg/L	2,900	2,800	2,800	2,800	2,800
Chloride, Cl	mg/L	22,000	21,000	21,000	21,000	21,000
Ionic Balance	%	-2.0	-2.0	-3.0	-3.0	-6.0

Metals in Waters - Acid extractable						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Date analysed	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Envirolab Reference: 234262

Revision No: P00

All metals in water-dissolved						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Date analysed	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	2	2	2	2	1
Boron-Dissolved	μg/L	4,800	4,400	4,300	4,200	4,300
Barium-Dissolved	μg/L	13	11	7	7	12
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	7	<5	<5	<5	<5
Molybdenum-Dissolved	μg/L	13	13	13	13	13
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	2	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	7,800	7,800	7,600	7,600	7,700
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	<1	2	2	1	<1

Envirolab Reference: 234262

Revision No: P00

Metals in Water - Dissolved						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Date analysed	-	13/01/2020	13/01/2020	13/01/2020	13/01/2020	13/01/2020
Silicon*- Dissolved	mg/L	0.5	<0.2	<0.2	<0.2	0.3

Microbiologocal Testing						
Our Reference		234262-1	234262-2	234262-3	234262-4	234262-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		09/01/2020	09/01/2020	09/01/2020	09/01/2020	09/01/2020
Type of sample		Water	Water	Water	Water	Water
Date of testing	-					
E. coli	cfu/100mL					
Faecal Coliforms	cfu/100mL					

Envirolab Reference: 234262

Revision No: P00

Method ID	Methodology Summary		
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.		
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.		
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.		
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.		
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.		
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.		
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.		
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.		
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.		
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.		
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.		
Metals-020	Determination of various metals by ICP-AES.		
Metals-021	Determination of Mercury by Cold Vapour AAS.		
Metals-022	Determination of various metals by ICP-MS.		

Envirolab Reference: 234262

Revision No: P00

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	234262-1
Date prepared	-			10/01/2020	1	10/01/2020	10/01/2020		10/01/2020	10/01/2020
Date analysed	-			10/01/2020	1	10/01/2020	10/01/2020		10/01/2020	10/01/2020
рН	pH Units		Inorg-001	[NT]	1	7.7	7.7	0	102	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	53000	53000	0	105	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	42000	42000	0	100	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	108	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.009	0.007	25	110	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	8.0	[NT]		86	77
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.010	0.01	0	117	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	110	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	234262-2	
Date prepared	-			[NT]	[NT]		[NT]	[NT]		10/01/2020	
Date analysed	-			[NT]	[NT]		[NT]	[NT]		10/01/2020	
NOx as N in water	mg/L	0.005	Inorg-055	[NT]	[NT]		[NT]	[NT]		83	
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	[NT]		[NT]	[NT]		128	
Phosphate as P in water	mg/L	0.005	Inorg-060	[NT]	[NT]		[NT]	[NT]		103	
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	[NT]		[NT]	[NT]		77	

Envirolab Reference: 234262 Revision No: P00

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	234262-2	
Date prepared	-			10/01/2020	1	10/01/2020	10/01/2020		10/01/2020	10/01/2020	
Date analysed	-			10/01/2020	1	10/01/2020	10/01/2020		10/01/2020	10/01/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	410	410	0	104	#	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	430	430	0	96	#	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	11000	11000	0	85	#	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1400	1400	0	102	#	
Hardness	mgCaCO 3 /L	3		[NT]	1	6900	6700	3	[NT]	[NT]	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	130	130	0	[NT]	[NT]	
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	130	130	0	104	[NT]	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	2900	2800	4	116	[NT]	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	22000	21000	5	97	[NT]	
Ionic Balance	%		Inorg-040	[NT]	1	-2.0	-3.0	-40	[NT]	[NT]	

Envirolab Reference: 234262 Revision No: P00

QUALITY CONTRO		Duplicate				Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			13/01/2020	1	13/01/2020	13/01/2020		13/01/2020	
Date analysed	-			13/01/2020	1	13/01/2020	13/01/2020		13/01/2020	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.05	0.05	0	101	

Envirolab Reference: 234262

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	234262-2	
Date prepared	-			13/01/2020	1	13/01/2020	13/01/2020		13/01/2020	13/01/2020	
Date analysed	-			13/01/2020	1	13/01/2020	13/01/2020		13/01/2020	13/01/2020	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	106	106	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	2	1	67	104	105	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	4800	4500	6	107	#	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	13	13	0	102	110	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	99	84	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	105	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	110	100	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	109	109	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	114	93	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	107	110	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	106	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	7	7	0	108	111	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	13	13	0	94	119	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	107	92	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	104	88	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	107	102	
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	7800	7800	0	109	#	
Titanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	103	119	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	101	101	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	106	93	

Envirolab Reference: 234262

QUALITY CON	QUALITY CONTROL: Metals in Water - Dissolved						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			13/01/2020	[NT]		[NT]	[NT]	13/01/2020	
Date analysed	-			13/01/2020	[NT]		[NT]	[NT]	13/01/2020	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	[NT]		[NT]	[NT]	109	

Envirolab Reference: 234262

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

l Definitions
This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
· · · · · · · · · · · · · · · · · · ·

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Envirolab Reference: 234262 Revision No: P00

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 234262 Page | 15 of 16
Revision No: P00

Report Comments

All metals in water-dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Dissolved Metals: no filtered sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Ion Balance - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 234262 Page | 16 of 16

Envirolab Services Pty Ltd ABN 37 112 535 645 aley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 237135

Client Details	
Client	Martens & Associates Pty Ltd
Attention	D Dhiacou, R Kightley, Andrew Norris
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: West Culburra: Mixed Use Subdivision
Number of Samples	5 Water
Date samples received	20/02/2020
Date completed instructions received	20/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	27/02/2020						
Date of Issue	27/02/2020						
NATA Accreditation Number 2901. Th	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Nancy Zhang, Laboratory Manager, Sydney Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/02/2020	20/02/2020	20/02/2020	20/02/2020	20/02/2020
Date analysed	-	20/02/2020	20/02/2020	20/02/2020	20/02/2020	20/02/2020
рН	pH Units	6.9	7.1	7.5	7.2	7.5
Electrical Conductivity	μS/cm	3,600	8,300	15,000	10,000	14,000
Total Dissolved Solids (grav)	mg/L	1,900	5,500	11,000	7,300	9,700
NOx as N in water	mg/L	0.05	0.04	0.2	0.07	0.2
Ammonia as N in water	mg/L	0.78	0.77	0.40	0.72	0.43
Total Nitrogen in water	mg/L	3.6	2.4	1.2	2.1	1.2
Phosphate as P in water	mg/L	0.093	0.073	0.032	0.066	0.022
Nitrate as N in water	mg/L	0.050	0.04	0.21	0.062	0.16

Ion Balance						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/02/2020	20/02/2020	20/02/2020	20/02/2020	20/02/2020
Date analysed	-	20/02/2020	20/02/2020	20/02/2020	20/02/2020	20/02/2020
Calcium - Dissolved	mg/L	42	67	120	84	100
Potassium - Dissolved	mg/L	30	56	130	62	120
Sodium - Dissolved	mg/L	650	1,800	3,500	2,000	3,100
Magnesium - Dissolved	mg/L	74	170	350	230	310
Hardness	mgCaCO 3 /L	410	880	1,700	1,200	1,600
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	59	65	66	66	64
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	59	65	66	66	64
Sulphate, SO4	mg/L	180	410	790	520	710
Chloride, Cl	mg/L	1,100	2,800	5,600	3,600	5,100
Ionic Balance	%	3.0	3.0	4.0	-2.0	2.0

Metals in Waters - Acid extractable						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/02/2020	24/02/2020	24/02/2020	24/02/2020	24/02/2020
Date analysed	-	24/02/2020	24/02/2020	24/02/2020	24/02/2020	24/02/2020
Phosphorus - Total	mg/L	0.7	0.3	0.1	0.3	0.09

Envirolab Reference: 237135

All metals in water-dissolved						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/02/2020	21/02/2020	21/02/2020	21/02/2020	21/02/2020
Date analysed	-	21/02/2020	21/02/2020	21/02/2020	21/02/2020	21/02/2020
Aluminium-Dissolved	μg/L	180	80	70	80	60
Arsenic-Dissolved	μg/L	2	2	2	2	2
Boron-Dissolved	μg/L	310	780	1,500	970	1,500
Barium-Dissolved	μg/L	6	8	13	10	12
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	5	3	<1	2	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	1	<1	<1	<1	<1
Iron-Dissolved	μg/L	1,300	610	170	530	160
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	560	410	94	370	88
Molybdenum-Dissolved	μg/L	1	3	4	3	4
Nickel-Dissolved	μg/L	5	3	<1	3	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	470	1,200	2,100	1,500	1,900
Titanium-Dissolved	μg/L	1.8	1.7	1.4	2.0	1.5
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	7	4	1	2	1

Metals in Water - Dissolved						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	25/02/2020	25/02/2020	25/02/2020	25/02/2020	25/02/2020
Date analysed	-	25/02/2020	25/02/2020	25/02/2020	25/02/2020	25/02/2020
Silicon*- Dissolved	mg/L	3.0	3.0	2.9	3.1	2.7

Microbiologocal Testing						
Our Reference		237135-1	237135-2	237135-3	237135-4	237135-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/02/2020	19/02/2020	19/02/2020	19/02/2020	19/02/2020
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	21/02/2020	21/02/2020	21/02/2020	21/02/2020	21/02/2020
E. coli	cfu/100mL	2000 A NBO	100 A	<10 NBO	100 A	150 NBO
Faecal Coliforms	cfu/100mL	2000 A NBO	200 A	40 A NBO	100 A	150 NBO

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 237135

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	237135-2
Date prepared	-			20/02/2020	1	20/02/2020	20/02/2020		20/02/2020	20/02/2020
Date analysed	-			20/02/2020	1	20/02/2020	20/02/2020		20/02/2020	20/02/2020
рН	pH Units		Inorg-001	[NT]	1	6.9	[NT]		101	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	3600	[NT]		102	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	1900	[NT]		93	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.05	0.05	0	96	85
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.78	0.78	0	96	118
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	3.6	3.6	0	102	104
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.093	0.089	4	113	86
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.050	0.052	4	97	81

QUALITY CO	NTROL: Mis	cellaneou	ıs Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				5	20/02/2020	20/02/2020			[NT]
Date analysed	-				5	20/02/2020	20/02/2020			[NT]
рН	pH Units		Inorg-001		5	7.5	7.5	0		[NT]
Electrical Conductivity	μS/cm	1	Inorg-002		5	14000	14000	0		[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018		5	9700	9400	3		[NT]
NOx as N in water	mg/L	0.005	Inorg-055		5	0.2	[NT]			[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057		5	0.43	[NT]			[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		5	1.2	[NT]			[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060		5	0.022	[NT]			[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055		5	0.16	[NT]			[NT]

QUALI	TY CONTRO	L: Ion Ba	alance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	237135-2
Date prepared	-			20/02/2020	5	20/02/2020	20/02/2020		20/02/2020	20/02/2020
Date analysed	-			20/02/2020	5	20/02/2020	20/02/2020		20/02/2020	20/02/2020
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	100	[NT]		103	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	120	[NT]		101	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	3100	[NT]		91	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	310	[NT]		101	[NT]
Hardness	mgCaCO 3 /L	3		[NT]	5	1600	[NT]		[NT]	[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	5	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	64	67	5	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	64	67	5	103	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	5	710	[NT]		106	#
Chloride, Cl	mg/L	1	Inorg-081	<1	5	5100	[NT]		101	#
Ionic Balance	%		Inorg-040	[NT]	5	2.0	[NT]		[NT]	[NT]

QUALITY CONTRO	DL: Metals ir	Waters ·	- Acid extractable			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			24/02/2020	1	24/02/2020	24/02/2020		24/02/2020	
Date analysed	-			24/02/2020	1	24/02/2020	24/02/2020		24/02/2020	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.7	0.7	0	92	

Envirolab Reference: 237135

QUALITY CON	ITROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			21/02/2020	[NT]		[NT]	[NT]	21/02/2020	
Date analysed	-			21/02/2020	[NT]		[NT]	[NT]	21/02/2020	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	109	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	99	
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	95	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	106	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	93	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	96	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Strontium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Titanium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	

QUALITY CON	TROL: Meta	ls in Wate	er - Dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	237135-2
Date digested	-			25/02/2020	1	25/02/2020	25/02/2020		25/02/2020	25/02/2020
Date analysed	-			25/02/2020	1	25/02/2020	25/02/2020		25/02/2020	25/02/2020
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	3.0	3.2	6	105	109

Envirolab Reference: 237135

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

рΗ

Samples were out of the recommended holding time for this analysis.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Micro analysed by Sonic, report no W2003961.

A-Approximate

Micro note: The presence of competing background non-coliform organisms in the sample may have reduced the count obtained.

ION BALANCE

Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 237135 Page | 16 of 16 R00

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 239371

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: West Culburra: Mixed Used Subdivision
Number of Samples	5 Water
Date samples received	20/03/2020
Date completed instructions received	20/03/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	27/03/2020			
Date of Issue	27/03/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Nancy Zhang, Laboratory Manager, Sydney Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/03/2020	20/03/2020	20/03/2020	20/03/2020	20/03/2020
Date analysed	-	20/03/2020	20/03/2020	20/03/2020	20/03/2020	20/03/2020
рН	pH Units	8.0	7.8	7.9	8.4	7.8
Electrical Conductivity	μS/cm	31,000	33,000	33,000	39,000	32,000
Total Dissolved Solids (grav)	mg/L	25,000	26,000	30,000	31,000	27,000
NOx as N in water	mg/L	<0.005	0.007	0.01	<0.005	0.02
Ammonia as N in water	mg/L	0.026	0.014	0.016	0.011	0.014
Total Nitrogen in water	mg/L	0.6	0.3	0.3	0.2	0.3
Phosphate as P in water	mg/L	0.015	0.008	<0.005	<0.005	<0.005
Nitrate as N in water	mg/L	<0.005	0.005	0.01	<0.005	0.01

lon Balance						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	23/03/2020	23/03/2020	23/03/2020	23/03/2020	23/03/2020
Date analysed	-	23/03/2020	23/03/2020	23/03/2020	23/03/2020	23/03/2020
Calcium - Dissolved	mg/L	250	270	270	320	270
Potassium - Dissolved	mg/L	260	290	280	350	280
Sodium - Dissolved	mg/L	7,900	8,300	9,100	10,000	8,500
Magnesium - Dissolved	mg/L	830	930	910	1,100	920
Hardness	mgCaCO 3 /L	4,100	4,500	4,400	5,200	4,400
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	110	100	97	96	99
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	15	<5
Total Alkalinity as CaCO₃	mg/L	110	100	97	110	99
Sulphate, SO4	mg/L	1,700	1,900	2,000	2,400	1,900
Chloride, Cl	mg/L	13,000	14,000	15,000	18,000	15,000
Ionic Balance	%	4.0	2.0	4.0	0	2.0

Metals in Waters - Acid extractable						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/03/2020	24/03/2020	24/03/2020	24/03/2020	24/03/2020
Date analysed	-	24/03/2020	24/03/2020	24/03/2020	24/03/2020	24/03/2020
Phosphorus - Total	mg/L	0.06	<0.05	<0.05	<0.05	<0.05

All metals in water-dissolved						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	24/03/2020	24/03/2020	24/03/2020	24/03/2020	24/03/2020
Date analysed	-	24/03/2020	24/03/2020	24/03/2020	24/03/2020	24/03/2020
Aluminium-Dissolved	μg/L	<10	<10	10	10	10
Arsenic-Dissolved	μg/L	2	2	2	2	2
Boron-Dissolved	μg/L	2,900	3,200	3,200	3,900	3,300
Barium-Dissolved	μg/L	12	13	13	11	13
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	0.1	<0.1	0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	26	27	11	17	14
Molybdenum-Dissolved	μg/L	8	8	8	9	9
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	5,400	5,600	5,600	6,800	5,600
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	<1	1	<1	1	2

Metals in Water - Dissolved						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	26/03/2020	26/03/2020	26/03/2020	26/03/2020	26/03/2020
Date analysed	-	26/03/2020	26/03/2020	26/03/2020	26/03/2020	26/03/2020
Silicon*- Dissolved	mg/L	0.5	0.5	0.9	<0.2	0.8

Microbiologocal Testing						
Our Reference		239371-1	239371-2	239371-3	239371-4	239371-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		19/03/2020	19/03/2020	19/03/2020	19/03/2020	19/03/2020
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	21/03/2020	21/03/2020	21/03/2020	21/03/2020	21/03/2020
E. coli	cfu/100mL	10 A NBO	20 A	12 NBO	4 A	5 A NBO
Faecal Coliforms	cfu/100mL	10 A NBO	20 A	12 NBO	4 A	5 A NBO

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Miscellaneous Inorganics						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	239371-2
Date prepared	-			20/03/2020	1	20/03/2020	20/03/2020		20/03/2020	20/03/2020
Date analysed	-			20/03/2020	1	20/03/2020	20/03/2020		20/03/2020	20/03/2020
pH	pH Units		Inorg-001	[NT]	1	8.0	8.0	0	102	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	31000	31000	0	93	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	25000	25000	0	98	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	[NT]		109	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.026	[NT]		96	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.6	0.5	18	88	103
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.015	[NT]		112	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	[NT]		110	[NT]

QUALITY CONTROL: Ion Balance						Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date prepared	-			23/03/2020	1	23/03/2020	23/03/2020		23/03/2020			
Date analysed	-			23/03/2020	1	23/03/2020	23/03/2020		23/03/2020			
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	250	260	4	97			
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	260	270	4	92			
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7900	8100	2	95			
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	830	880	6	99			
Hardness	mgCaCO3/L	3		[NT]	1	4100	4300	5	[NT]			
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]			
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	110	110	0	[NT]			
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]			
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	110	110	0	107			
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	1700	1700	0	106			
Chloride, Cl	mg/L	1	Inorg-081	<1	1	13000	13000	0	96			
Ionic Balance	%		Inorg-040	[NT]	1	4.0	5.0	22	[NT]			

QUALITY CONTROL: Metals in Waters - Acid extractable						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			24/03/2020	[NT]		[NT]	[NT]	24/03/2020	
Date analysed	-			24/03/2020	[NT]		[NT]	[NT]	24/03/2020	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	117	[NT]

Envirolab Reference: 239371

QUALITY (CONTROL: All m	NTROL: All metals in water-dissolved					ıplicate	_	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			24/03/2020	[NT]		[NT]	[NT]	24/03/2020		
Date analysed	-			24/03/2020	[NT]		[NT]	[NT]	24/03/2020		
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	94		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	86		
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	87		
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	90		
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	83		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	94		
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	89		
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	87		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	105		
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	98		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	87		
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	89		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	90		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100		
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98		
Strontium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	88		
Titanium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95		
Vanadium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	86		
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92		

QUALITY CONTROL: Metals in Water - Dissolved					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date digested	-			26/03/2020	1	26/03/2020	26/03/2020		26/03/2020	
Date analysed	-			26/03/2020	1	26/03/2020	26/03/2020		26/03/2020	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	0.5	0.5	0	107	

Envirolab Reference: 239371

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 15 of 16

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Faecal Coliform & E.Coli analysed by Sonic Food & Water Testing. Report No. W2006504

A: Approximate

NBO: The presence of competing background organisms in the sample may have reduced the count.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 239371 Page | 16 of 16 Revision No: R00

customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 242059

Client Details	
Client	Martens & Associates Pty Ltd
Attention	D Dhiacou, R Kightley, Andrew Norris
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: West Culburra: Mixed Use Subdivision
Number of Samples	5 Water
Date samples received	01/05/2020
Date completed instructions received	01/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	08/05/2020				
Date of Issue	08/05/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Metals in Waters - Acid extractable						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	07/05/2020	07/05/2020	07/05/2020	07/05/2020	07/05/2020
Phosphorus - Total	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1

All metals in water-dissolved						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	2	2	2	2	1
Boron-Dissolved	μg/L	3,500	3,200	3,300	3,300	3,000
Barium-Dissolved	μg/L	14	14	15	11	14
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	2	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	25	21	10	8	<5
Molybdenum-Dissolved	μg/L	11	9	10	11	9
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	1
Zinc-Dissolved	μg/L	1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	6,400	6,400	6,400	6,300	6,500
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1

Metals in Water - Dissolved						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	08/05/2020	08/05/2020	08/05/2020	08/05/2020	08/05/2020
Date analysed	-	08/05/2020	08/05/2020	08/05/2020	08/05/2020	08/05/2020
Silicon*- Dissolved	mg/L	0.5	0.3	0.4	0.6	1.1

Microbiologocal Testing						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	02/05/2020	02/05/2020	02/05/2020	02/05/2020	02/05/2020
E. coli	MPN/100mL	2 A	7 A	<1	1 A	<1
Faecal Coliforms	MPN/100mL	2 A	7 A	<1	1 A	<1

Ion Balance						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Date analysed	-	01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Calcium - Dissolved	mg/L	360	390	360	380	370
Potassium - Dissolved	mg/L	350	350	340	360	350
Sodium - Dissolved	mg/L	10,000	10,000	10,000	11,000	11,000
Magnesium - Dissolved	mg/L	1,200	1,200	1,200	1,200	1,200
Hardness	mgCaCO 3 /L	5,900	6,000	5,700	6,100	5,900
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	120	110	110	110	110
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	120	110	110	110	110
Sulphate, SO4	mg/L	2,200	2,300	2,300	2,400	2,300
Chloride, Cl	mg/L	17,000	18,000	18,000	19,000	18,000
Ionic Balance	%	3.0	1.0	1.0	3.0	4.0

Miscellaneous Inorganics						
Our Reference		242059-1	242059-2	242059-3	242059-4	242059-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		29/04/2020	29/04/2020	29/04/2020	29/04/2020	29/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Date analysed	-	01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
рН	pH Units	7.8	7.6	7.8	7.8	7.8
Electrical Conductivity	μS/cm	45,000	46,000	45,000	47,000	46,000
Temperature oC	° C	25	25	25	25	25
Total Nitrogen in water	mg/L	0.2	0.2	0.2	0.1	0.1
Nitrate as N in water	mg/L	<0.005	<0.005	0.02	<0.005	<0.005
Ammonia as N in water	mg/L	0.017	0.025	0.032	0.029	0.011
NOx as N in water	mg/L	<0.005	<0.005	0.02	<0.005	<0.005
Phosphate as P in water	mg/L	0.01	0.01	0.009	0.008	0.007
Total Dissolved Solids (grav)	mg/L	36,000	36,000	36,000	38,000	37,000

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 242059

QUALITY CONTRO	OL: Metals ir	Waters ·	- Acid extractable		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242059-2
Date prepared	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	04/05/2020
Date analysed	-			07/05/2020	1	07/05/2020	07/05/2020		07/05/2020	07/05/2020
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.1	<0.1	0	98	#

Envirolab Reference: 242059

QUALITY CON	TROL: All m	QUALITY CONTROL: All metals in water-dissolved				Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	242059-2	
Date prepared	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	04/05/2020	
Date analysed	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	04/05/2020	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	10	0	100	101	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	93	101	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	3500	3100	12	102	#	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	14	14	0	98	100	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	110	92	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	107	99	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	103	88	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	96	98	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	101	80	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	101	90	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	99	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	25	20	22	94	109	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	11	9	20	110	110	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	84	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	100	80	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	95	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	96	109	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	1	<1	0	96	87	
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	6400	6300	2	102	#	
Titanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	112	

QUALITY CON	TROL: Meta	ls in Wate	er - Dissolved		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242059-5
Date digested	-			08/05/2020	1	08/05/2020	04/05/2020		08/05/2020	04/05/2020
Date analysed	-			08/05/2020	1	08/05/2020	04/05/2020		08/05/2020	04/05/2020
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	0.5	0.5	0	108	115

Envirolab Reference: 242059

QUALI			Duplicate Spil				covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242059-2
Date prepared	-			01/05/2020	1	01/05/2020	01/05/2020		01/05/2020	04/05/2020
Date analysed	-			01/05/2020	1	01/05/2020	01/05/2020		01/05/2020	04/05/2020
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	360	[NT]		102	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	350	[NT]		89	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	10000	[NT]		107	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1200	[NT]		104	[NT]
Hardness	mgCaCO 3 /L	3		[NT]	1	5900	[NT]		[NT]	[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	120	120	0	[NT]	[NT]
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	120	120	0	105	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	2200	[NT]		98	#
Chloride, Cl	mg/L	1	Inorg-081	<1	1	17000	[NT]		93	#
Ionic Balance	%		Inorg-040	[NT]	1	3.0	[NT]		[NT]	[NT]

QUALITY COI	NTROL: Mis	cellaneou	ıs Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242059-2
Date prepared	-			01/05/2020	1	01/05/2020	01/05/2020		01/05/2020	01/05/2020
Date analysed	-			01/05/2020	1	01/05/2020	01/05/2020		01/05/2020	01/05/2020
рН	pH Units		Inorg-001	[NT]	1	7.8	7.8	0	100	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	45000	45000	0	104	[NT]
Temperature oC	°C			[NT]	1	25	[NT]		[NT]	[NT]
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.2	0.2	0	83	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	101	95
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.017	0.015	12	103	122
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	100	97
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.01	0.01	0	110	118
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	36000	35000	3	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 242059

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Holding time exceedance for pH.

Faecal Coliform & E.Coli analysed by Sonic Food & Water Testing. Report No. W2009365 A:Approximate and holding time exceedance for this analysis.

ION_BALANCE: CI & SO4 # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

All metals in water-dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

8 Metals in Waters - total:

- # High spike recovery was obtained for this sample. Sample matrix interference is suspected. However, an acceptable recovery was obtained for the LCS.
- -The PQL has been raised due to the sample matrix requiring dilution.

Envirolab Reference: 242059 Page | 16 of 16
Revision No: R00

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243860

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Andrew Norris
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P1203365: West Culburra: Mixed Use Subdivision
Number of Samples	5 Water
Date samples received	29/05/2020
Date completed instructions received	29/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	05/06/2020	
Date of Issue	04/06/2020	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Hannah Nguyen, Senior Chemist Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

All metals in water-dissolved						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/06/2020	01/06/2020	01/06/2020	01/06/2020	01/06/2020
Date analysed	-	01/06/2020	01/06/2020	01/06/2020	01/06/2020	01/06/2020
Aluminium-Dissolved	μg/L	10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	1	1	1	<1	<1
Boron-Dissolved	μg/L	2,400	2,600	2,500	2,400	2,400
Barium-Dissolved	μg/L	13	14	13	14	13
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	2	2	<1	<1	1
Iron-Dissolved	μg/L	18	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	38	20	8	16	7
Molybdenum-Dissolved	μg/L	8	9	9	9	9
Nickel-Dissolved	μg/L	1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	6,000	6,600	6,700	6,600	6,700
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	4	2	5	1	<1

Metals in Waters - Acid extractable						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/06/2020	01/06/2020	01/06/2020	01/06/2020	01/06/2020
Date analysed	-	01/06/2020	01/06/2020	01/06/2020	01/06/2020	01/06/2020
Phosphorus - Total	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1

Metals in Water - Dissolved						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	02/06/2020	02/06/2020	02/06/2020	02/06/2020	02/06/2020
Date analysed	-	02/06/2020	02/06/2020	02/06/2020	02/06/2020	02/06/2020
Silicon*- Dissolved	mg/L	0.4	0.4	0.4	0.4	0.5

Microbiologocal Testing						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date of testing	-	30/05/2020	30/05/2020	30/05/2020	30/05/2020	30/05/2020
Faecal Coliforms	cfu/100mL	50	7 A	6 A	5 A	7 A
E. coli	cfu/100mL	50	7 A	6 A	5 A	7 A

Miscellaneous Inorganics						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/05/2020	29/05/2020	29/05/2020	29/05/2020	29/05/2020
Date analysed	-	29/05/2020	29/05/2020	29/05/2020	29/05/2020	29/05/2020
рН	pH Units	7.6	7.8	7.7	7.7	7.8
Electrical Conductivity	μS/cm	39,000	41,000	42,000	42,000	41,000
Temperature oC	° C	18.9	19.3	19	18.8	18.8
Total Dissolved Solids (grav)	mg/L	29,000	31,000	32,000	33,000	32,000
NOx as N in water	mg/L	0.04	0.02	0.02	0.03	<0.005
Ammonia as N in water	mg/L	0.37	0.20	0.15	0.16	0.13
Total Nitrogen in water	mg/L	0.6	0.3	0.2	0.2	0.1
Phosphate as P in water	mg/L	0.032	0.016	0.012	0.017	<0.005
Nitrate as N in water	mg/L	0.03	0.02	0.02	0.02	<0.005

Ion Balance						
Our Reference		243860-1	243860-2	243860-3	243860-4	243860-5
Your Reference	UNITS	3365/WQ201	3365/WQ202B	3365/WQ203	3365/WQ204	3365/WQ205
Date Sampled		27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/05/2020	29/05/2020	29/05/2020	29/05/2020	29/05/2020
Date analysed	-	29/05/2020	29/05/2020	29/05/2020	29/05/2020	29/05/2020
Calcium - Dissolved	mg/L	270	280	280	270	280
Potassium - Dissolved	mg/L	320	370	360	380	350
Sodium - Dissolved	mg/L	9,800	11,000	9,600	11,000	11,000
Magnesium - Dissolved	mg/L	810	860	880	860	850
Hardness	mgCaCO 3 /L	4,000	4,200	4,300	4,200	4,200
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	100	100	100	110	100
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	100	100	100	110	100
Sulphate, SO4	mg/L	2,000	2,000	2,100	2,000	2,100
Chloride, Cl	mg/L	15,000	16,000	16,000	15,000	16,000
Ionic Balance	%	5.0	6.0	1.0	8.0	5.0

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 243860

QUALITY CON	TROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	243860-2
Date prepared	-			01/06/2020	1	01/06/2020	01/06/2020		01/06/2020	01/06/2020
Date analysed	-			01/06/2020	1	01/06/2020	01/06/2020		01/06/2020	01/06/2020
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	10	10	0	111	98
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	1	1	0	96	97
Boron-Dissolved	μg/L	20	Metals-022	<20	1	2400	2500	4	109	#
Barium-Dissolved	μg/L	1	Metals-022	<1	1	13	14	7	105	105
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	97	##
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	93
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	94
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	99
Copper-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	101	87
Iron-Dissolved	μg/L	10	Metals-022	<10	1	18	16	12	105	100
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	91	104
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	38	39	3	103	102
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	8	8	0	104	108
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	1	2	67	100	90
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	95
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	90	85
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	6000	6200	3	99	#
Titanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	107	118
Vanadium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	108
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	4	5	22	106	96

QUALITY CONTRO	OL: Metals ir	Waters ·	- Acid extractable			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	243860-2	
Date prepared	-			01/06/2020	1	01/06/2020	01/06/2020		01/06/2020	01/06/2020	
Date analysed	-			01/06/2020	1	01/06/2020	01/06/2020		01/06/2020	01/06/2020	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.1	<0.1	0	101	109	

Envirolab Reference: 243860

QUALITY CON	TROL: Meta	ls in Wate	er - Dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	243860-5
Date digested	-			02/06/2020	4	02/06/2020	02/06/2020		02/06/2020	02/06/2020
Date analysed	-			02/06/2020	4	02/06/2020	02/06/2020		02/06/2020	02/06/2020
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	4	0.4	0.4	0	100	116

Envirolab Reference: 243860

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	243860-2
Date prepared	-			29/05/2020	1	29/05/2020	29/05/2020		29/05/2020	29/05/2020
Date analysed	-			29/05/2020	1	29/05/2020	29/05/2020		29/05/2020	29/05/2020
рН	pH Units		Inorg-001	[NT]	1	7.6	7.6	0	100	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	39000	39000	0	98	[NT]
Temperature oC	°C			[NT]	1	18.9	19.1	1	[NT]	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	29000	29000	0	92	[NT]
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.04	0.03	29	105	95
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.37	0.37	0	102	124
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.6	0.6	0	98	74
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.032	0.032	0	93	105
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.03	0.03	0	106	91

QUALITY COI	NTROL: Mis	cellaneou	ıs Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				4	29/05/2020	29/05/2020		[NT]	
Date analysed	-				4	29/05/2020	29/05/2020		[NT]	
рН	pH Units		Inorg-001		4	7.7	[NT]		[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002		4	42000	[NT]		[NT]	
Temperature oC	°C				4	18.8	[NT]		[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018		4	33000	[NT]		[NT]	
NOx as N in water	mg/L	0.005	Inorg-055		4	0.03	[NT]		[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057		4	0.16	[NT]		[NT]	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		4	0.2	[NT]		[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060		4	0.017	[NT]		[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055		4	0.02	[NT]		[NT]	

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			29/05/2020	1	29/05/2020	29/05/2020		29/05/2020	
Date analysed	-			29/05/2020	1	29/05/2020	29/05/2020		29/05/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	270	[NT]		89	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	320	[NT]		87	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	9800	[NT]		92	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	810	[NT]		86	
Hardness	mgCaCO 3 /L	3		[NT]	1	4000	[NT]		[NT]	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	100	100	0	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	100	100	0	108	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	2000	1900	5	113	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	15000	15000	0	89	
Ionic Balance	%		Inorg-040	[NT]	1	5.0	[NT]		[NT]	

QUALITY CONTROL: Ion Balance						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	4	29/05/2020	29/05/2020			[NT]
Date analysed	-			[NT]	4	29/05/2020	29/05/2020			[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	270	[NT]			[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	380	[NT]			[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	11000	[NT]			[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	4	860	[NT]			[NT]
Hardness	mgCaCO 3/L	3		[NT]	4	4200	[NT]			[NT]
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	[NT]	4	<5	[NT]			[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	110	[NT]			[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	<5	[NT]			[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	4	110	[NT]			[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	4	2000	2100	5		[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	4	15000	16000	6		[NT]
Ionic Balance	%		Inorg-040	[NT]	4	8.0	[NT]			[NT]

Result Definitions				
NT	Not tested			
NA	Test not required			
INS	Insufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Envirolab Reference: 243860

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Holding time exceedance - pH, micro

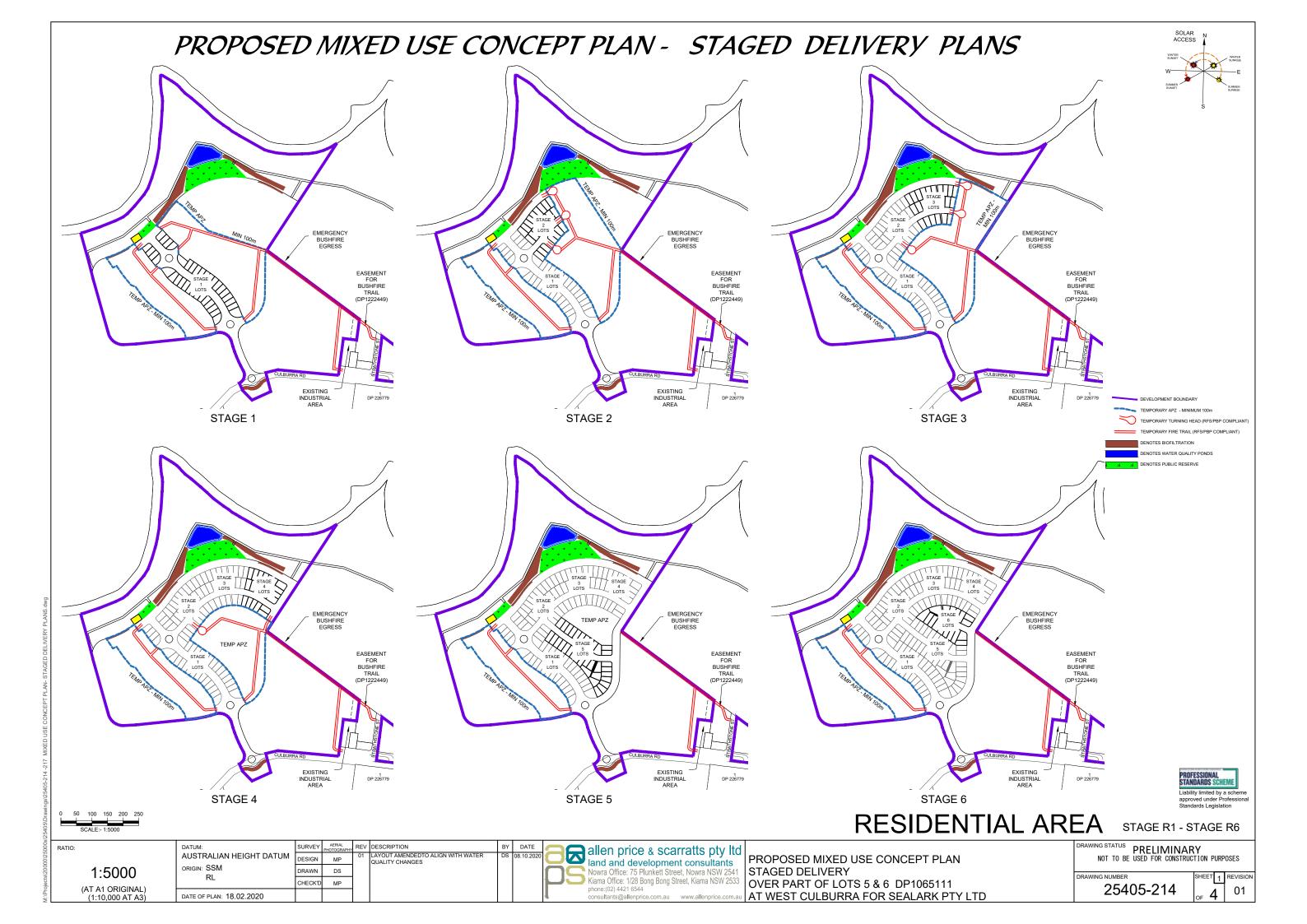
Microbiological testing analysed by Sonic food and water testing. Report no. W2011213

A: Approximate

8 Metals in Waters - total: The PQL has been raised 2 times due to suppression of the internal standard, which required the samples to be diluted. This is likely due to the high level of salts in the sample.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.


All metals in water-dissolved:

- # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.
- ## Low spike recovery was obtained for this sample. Sample matrix interference is suspected. However, an acceptable recovery was obtained for the LCS

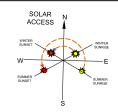
Envirolab Reference: 243860 Page | 16 of 16 R00

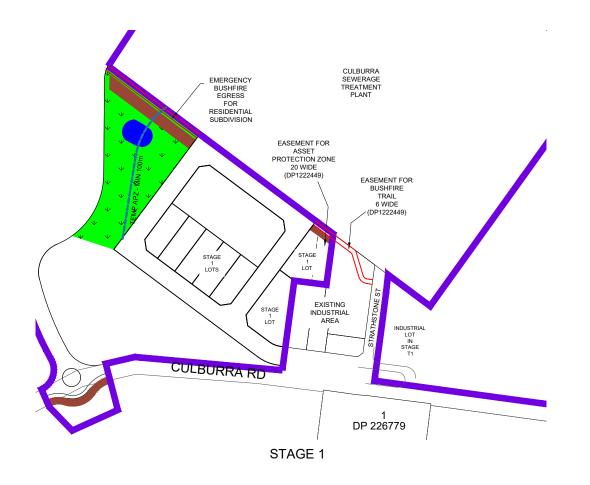
26 Annexure P: Construction Staging Plan

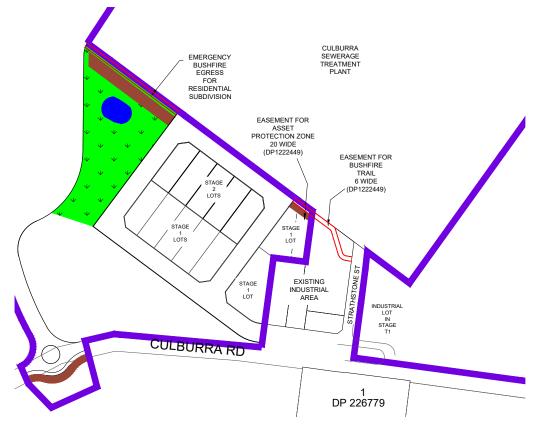
PROPOSED MIXED USE CONCEPT PLAN - STAGED DELIVERY PLANS EMERGENCY BUSHFIRE EGRESS EMERGENCY BUSHFIRE EGRESS EASEMENT FOR BUSHFIRE TRAIL (DP1222449) EASEMENT FOR BUSHFIRE TRAIL (DP1222449) TEMP APZ STAGE 7 STAGE 8 ENOTES PUBLIC RESERVE EMERGENCY BUSHFIRE EGRESS EASEMENT Liability limited by a scher approved under Professio Standards Legislation STAGE 9 - RESIDENTIAL SUBDIVISION COMPLETE RESIDENTIAL AREA STAGE R7 - STAGE R9 ALL TEMPORARY APZ's REMOVED allen price & scarratts pty ltd REV DESCRIPTION 01 LAYOUT AMENDEDTO ALIGN WITH WATER DRAWING STATUS PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES AUSTRALIAN HEIGHT DATUM DESIGN PROPOSED MIXED USE CONCEPT PLAN land and development consultants ORIGIN: SSM DRAWN STAGED DELIVERY 1:5000 DS Nowra Office: 75 Plunkett Street, Nowra NSW 2541

(AT A1 ORIGINAL) (1:10000 AT A3)

RL CHECK'D MP DATE OF PLAN: 18.02.2020


Kiama Office: 1/28 Bong Bong Street, Kiama NSW 2533 phone:(02) 4421 6544 consultants@allenprice.com.au


OVER PART OF LOTS 5 & 6 DP1065111 AT WEST CULBURRA FOR SEALARK PTY LTD


DRAWING NUMBER 25405-215

01 4

PROPOSED MIXED USE CONCEPT PLAN - STAGED DELIVERY PLANS

STAGE 2 - INDUSTRIAL SUBDIVISION COMPLETE

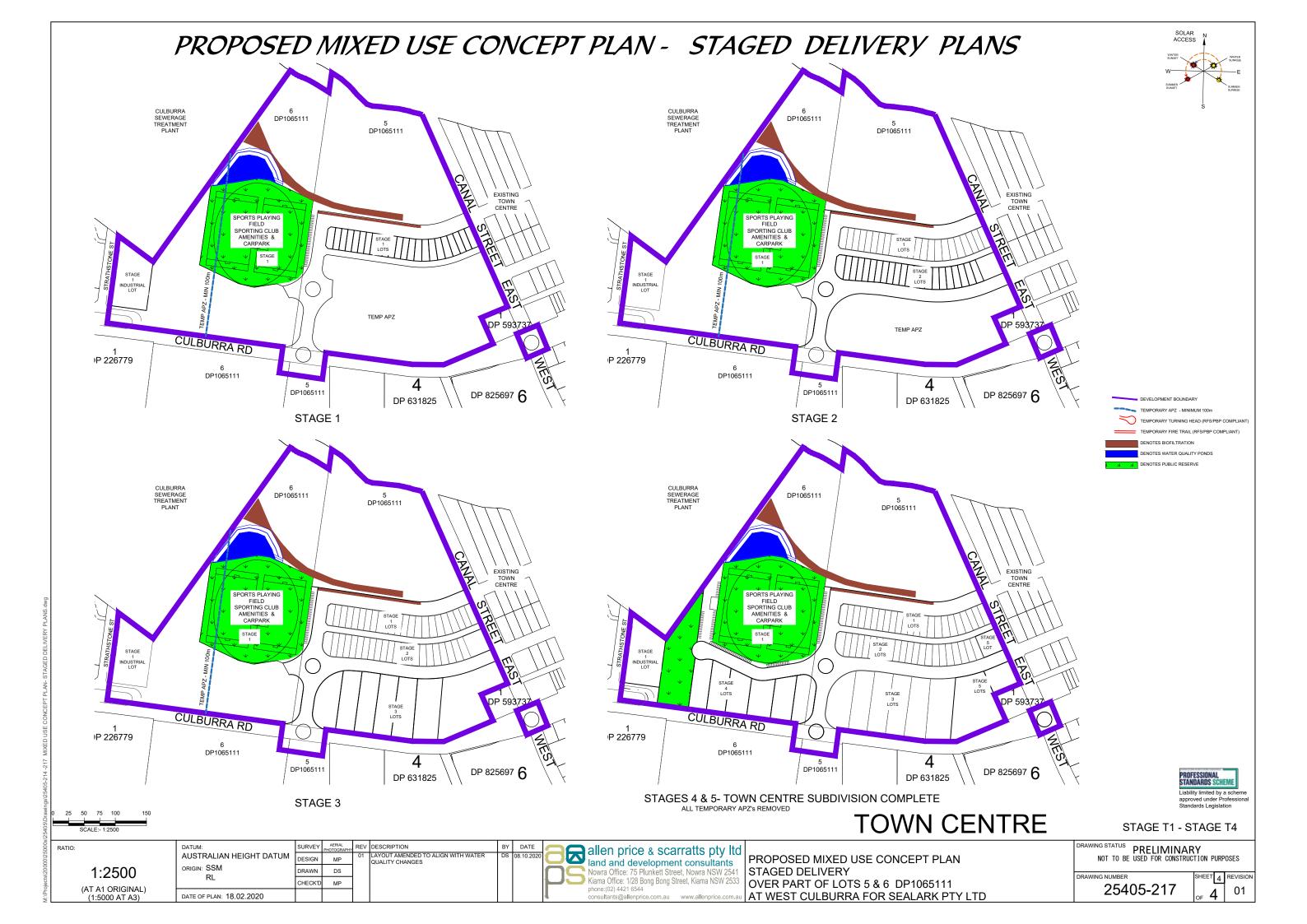
PROFESSIONAL STANDARDS SCHEME Liability limited by a scheme approved under Professional Standards Legislation

INDUSTRIAL AREA

STAGE I1 - STAGE I3

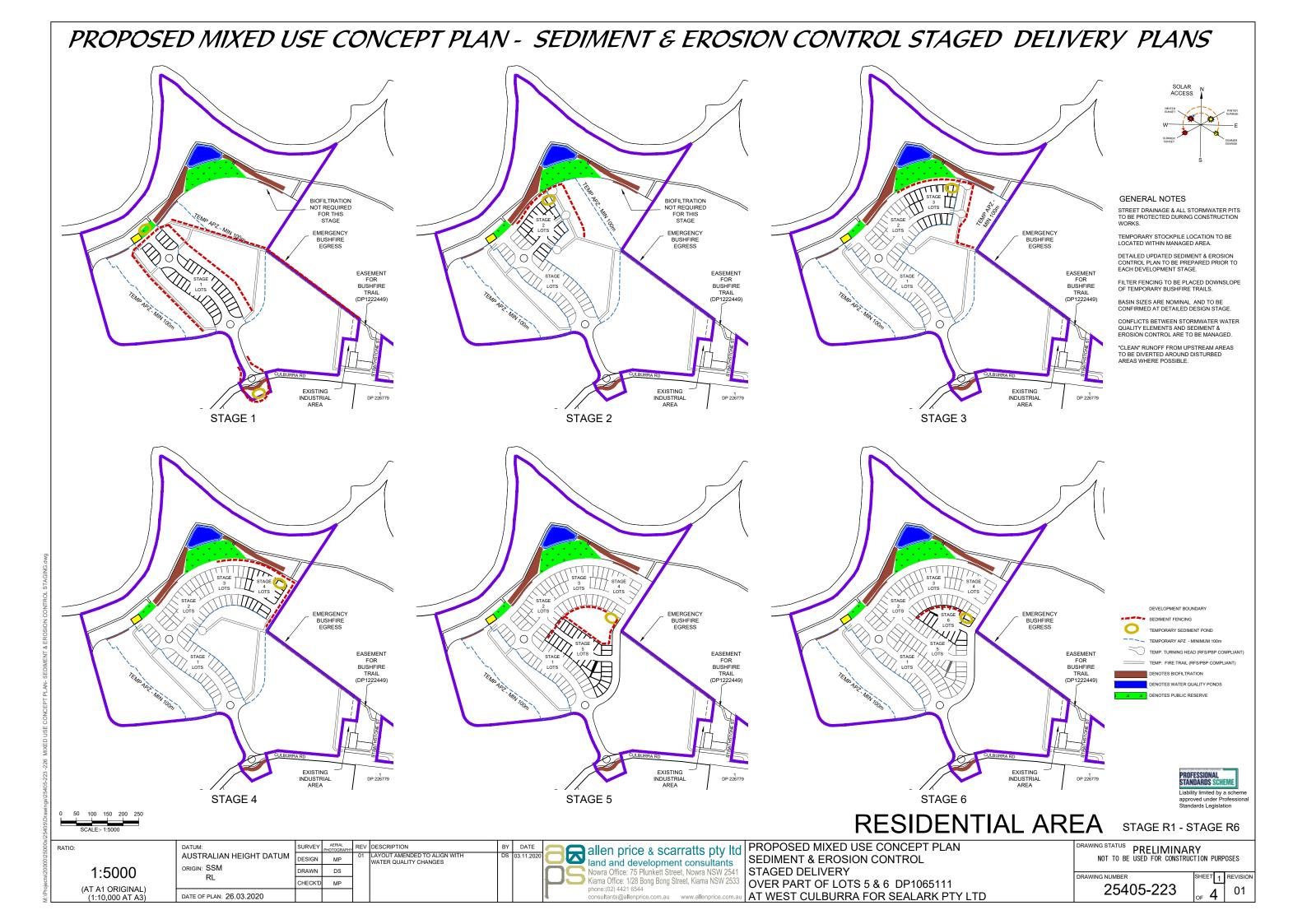
1:2500 (AT A1 ORIGINAL) (1:5000 AT A3) | DATUM: | AUSTRALIAN HEIGHT DATUM | DESIGN | MP | DATUM | DESIGN | MP | DRAWN | DS | CHECKD | MP | DATE OF PLAN: 18.02.2020 | SURVEY | AERIAL PHOTOGRAPHY | REV | DESCRIPTION | BY | DATI | DATI OF PLAN: 18.02.2020 | DATE OF PLAN: 18.02.2

allen price & scarratts pty ltd land and development consultants
Nowra Office: 75 Plunkett Street, Nowra NSW 2541
Kiama Office: 1/28 Bong Bong Street, Kiama NSW 2533
phone:(02) 4421 6544
consultants@allenprice.com.au www.allenprice.com.au

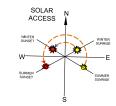

PROPOSED MIXED USE CONCEPT PLAN STAGED DELIVERY OVER PART OF LOTS 5 & 6 DP1065111 AT WEST CULBURRA FOR SEALARK PTY LTD DRAWING STATUS PRELIMINARY

NOT TO BE USED FOR CONSTRUCTION PURPOSES

DRAWING NUMBER SHEET 2 REVIS


25405-216

OF 4 01



27 Annexure Q: Sediment & Erosion Control Plan

PROPOSED MIXED USE CONCEPT PLAN - SEDIMENT & EROSION CONTROL STAGED DELIVERY PLANS

GENERAL NOTES

STREET DRAINAGE & ALL STORMWATER PITS TO BE PROTECTED DURING CONSTRUCTION

TEMPORARY STOCKPILE LOCATION TO BE LOCATED WITHIN MANAGED AREA.

DETAILED UPDATED SEDIMENT & EROSION CONTROL PLAN TO BE PREPARED PRIOR TO EACH DEVELOPMENT STAGE.

FILTER FENCING TO BE PLACED DOWNSLOPE OF TEMPORARY BUSHFIRE TRAILS.

CONFLICTS BETWEEN STORMWATER WATER QUALITY ELEMENTS AND SEDIMENT & EROSION CONTROL ARE TO BE MANAGED.

"CLEAN" RUNOFF FROM UPSTREAM AREAS TO BE DIVERTED AROUND DISTURBED AREAS WHERE POSSIBLE.

Liability limited by a scher

STAGE 9 - RESIDENTIAL SUBDIVISION COMPLETE ALL TEMPORARY APZ's REMOVED

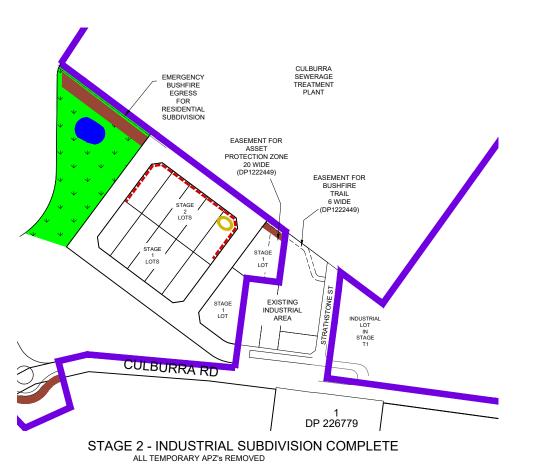
RESIDENTIAL AREA STAGE R7 - STAGE R9

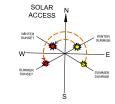
1:5000 (AT A1 ORIGINAL) (1:10000 AT A3)

REV DESCRIPTION LAYOUT AMENDED TO ALIGN WITH AUSTRALIAN HEIGHT DATUM DESIGN ORIGIN: SSM DRAWN DS RL CHECK'D MP DATE OF PLAN: 26.03.2020

land and development consultants Nowra Office: 75 Plunkett Street, Nowra NSW 2541 Kiama Office: 1/28 Bong Bong Street, Kiama NSW 2533

allen price & scarratts pty Itd PROPOSED MIXED USE CONCEPT PLAN STAGED DELIVERY OVER PART OF LOTS 5 & 6 DP1065111 AT WEST CULBURRA FOR SEALARK PTY LTD


DRAWING STATUS PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES


DRAWING NUMBER 25405-224

01 4

PROPOSED MIXED USE CONCEPT PLAN - SEDIMENT & EROSION CONTROL STAGED DELIVERY PLANS

GENERAL NOTES

STREET DRAINAGE & ALL STORMWATER PITS TO BE PROTECTED DURING CONSTRUCTION

TEMPORARY STOCKPILE LOCATION TO BE LOCATED WITHIN MANAGED AREA.

DETAILED UPDATED SEDIMENT & EROSION CONTROL PLAN TO BE PREPARED PRIOR TO EACH DEVELOPMENT STAGE.

FILTER FENCING TO BE PLACED DOWNSLOPE OF TEMPORARY BUSHFIRE TRAILS.

CONFLICTS BETWEEN STORMWATER WATER QUALITY ELEMENTS AND SEDIMENT & EROSION CONTROL ARE TO BE MANAGED

"CLEAN" RUNOFF FROM UPSTREAM AREAS TO BE DIVERTED AROUND DISTURBED AREAS WHERE POSSIBLE.

Liability limited by a scher

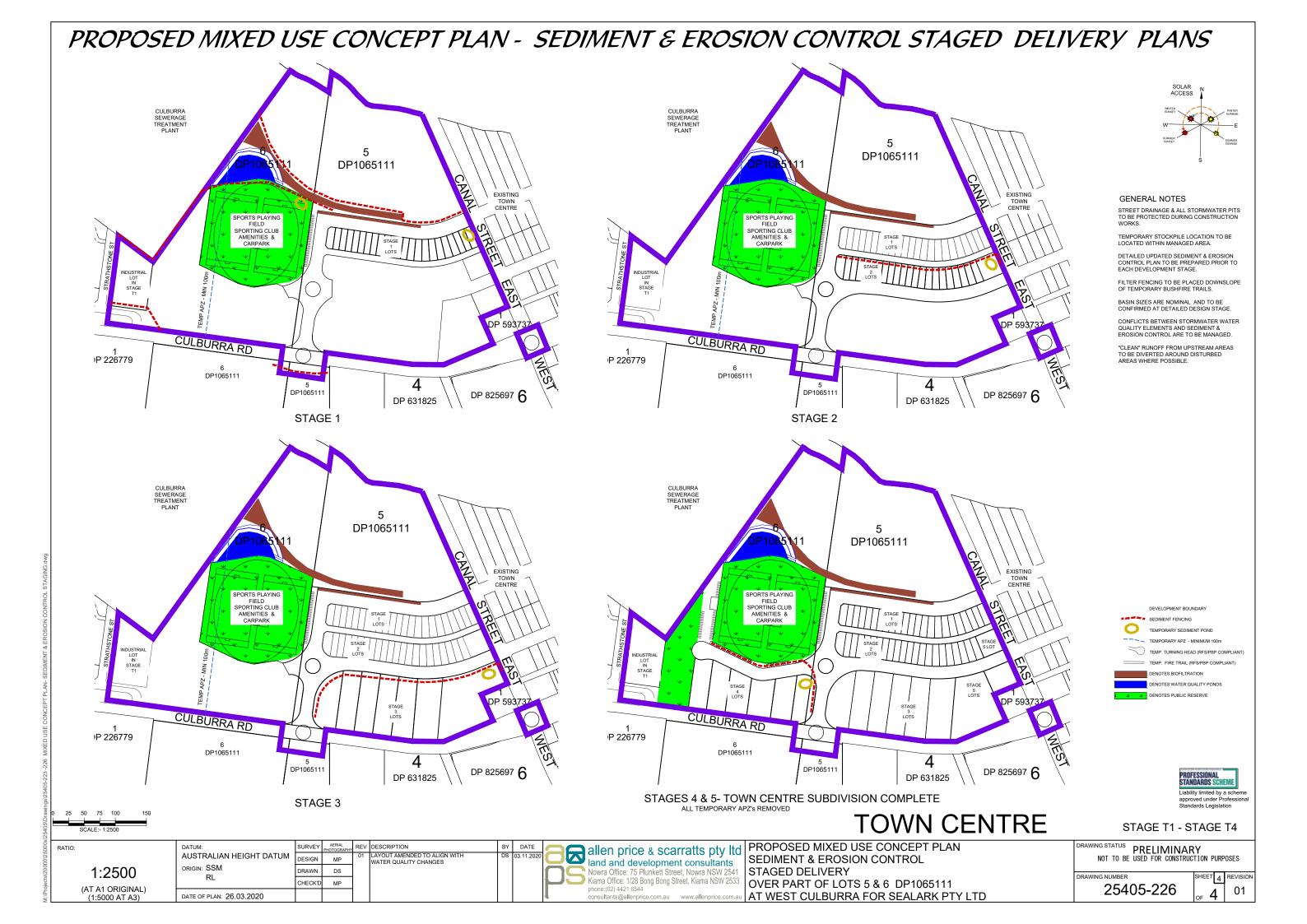
INDUSTRIAL AREA

STAGE I1 - STAGE I3

1:2500 (AT A1 ORIGINAL) (1:5000 AT A3)

REV DESCRIPTION LAYOUT AMENDED TO ALIGN WITH AUSTRALIAN HEIGHT DATUM DESIGN ORIGIN: SSM DRAWN DS RL CHECK'D MP DATE OF PLAN: 26.03.2020

land and development consultants Nowra Office: 75 Plunkett Street, Nowra NSW 2541 Kiama Office: 1/28 Bong Bong Street, Kiama NSW 2533

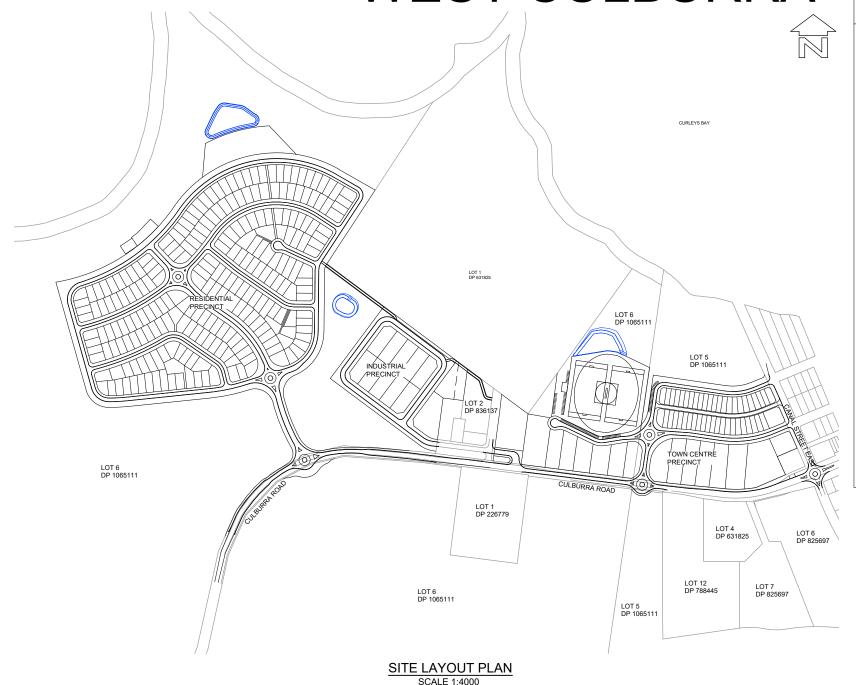

allen price & scarratts pty ltd PROPOSED MIXED USE CONCEPT PLAN STAGED DELIVERY OVER PART OF LOTS 5 & 6 DP1065111 AT WEST CULBURRA FOR SEALARK PTY LTD

DRAWING STATUS PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES

DRAWING NUMBER 25405-225

4

01



28 Annexure R: Engineering Plans


PRELIMINARY ENGINEERING DRAWINGS FOR PROPOSED MIXED-USE SUBDIVISION AT

WEST CULBURRA

DRAWING SCHEDULE

Į		
	25405-100	COVER SHEET AND INDEX PLAN
	25405-101	PRELIMINARY RESIDENTIAL PRECINCT LAYOUT PLAN
	25405-102	PRELIMINARY INDUSTRIAL PRECINCT LAYOUT PLAN
	25405-103	PRELIMINARY TOWN CENTRE PRECINCT LAYOUT PLAN
	25405-104	PRELIMINARY OVERALL CONCEPT ROUNDABOUT 01 DESIGN
	25405-105	PRELIMINARY CONCEPT ROUNDABOUT 01 DESIGN
	25405-106	ROUNDABOUT 01 VEHICLE MOVEMENT LAYOUT PLAN SHEET 01
	25405-107	ROUNDABOUT 01 VEHICLE MOVEMENT LAYOUT PLAN SHEET 02
	25405-108	PRELIMINARY ROUNDABOUT 01 SIGHT LINE LAYOUT PLAN
	25405-109	PRELIMINARY CONCEPT INDUSTRIAL ENTRY AND EXIT LAYOUT PLAN
	25405-110	PRELIMINARY CONCEPT INDUSTRIAL ENTRY AND EXIT VEHICLE
		MOVEMENTS AND SIGHT DISTANCE LAYOUT PLAN
	25405-111	PRELIMINARY CONCEPT ROUNDABOUT 02 LAYOUT PLAN
	25405-112	PRELIMINARY CONCEPT ROUNDABOUT 02 DESIGN
	25405-113	ROUNDABOUT 02 VEHICLE MOVEMENT LAYOUT PLAN
	25405-114	PRELIMINARY ROUNDABOUT 02 SIGHT LINE LAYOUT PLAN
	25405-115	PRELIMINARY CONCEPT ROUNDABOUT 03 LAYOUT PLAN
	25405-116	PRELIMINARY CONCEPT ROUNDABOUT 03 DESIGN
	25405-117	ROUNDABOUT 03 VEHICLE MOVEMENT LAYOUT PLAN SHEET 01
	25405-118	ROUNDABOUT 03 VEHICLE MOVEMENT LAYOUT PLAN SHEET 02
	25405-119	PRELIMINARY ROUNDABOUT 03 SIGHT LINE LAYOUT PLAN
	25405-120	PRELIMINARY TYPICAL ROAD CROSS SECTIONS PLAN SHEET 01
	25405-121	PRELIMINARY TYPICAL ROAD CROSS SECTIONS PLAN SHEET 02
	25405-122	PRELIMINARY TYPICAL ROAD CROSS SECTIONS PLAN SHEET 03
	25405-123	PRELIMINARY TYPICAL ROAD CROSS SECTIONS PLAN SHEET 04
	25405-124	PRELIMINARY TYPICAL ROAD CROSS SECTIONS PLAN SHEET 05
	25405-125	WESTERN POND CONCEPT LAYOUT PLAN
	25405-126	CENTRAL POND CONCEPT LAYOUT PLAN
	25405-127	EASTERN POND CONCEPT LAYOUT PLAN
	25405-128	TYPICAL WESTERN AND EASTERN POND CROSS SECTIONS PLAN

MAP DRAWN & PUBLISHED BY

CARTODRAFT AUST P/L

EWARE!

THE CONTRACTOR IS TO VERIFY THE LOCATION OF ALL EXISTING SERVICES PRIOR TO COMMENCEMENT OF CONSTRUCTION AND SHABE RESPONSIBLE, AT THE CONTRACTOR'S EXPENSE, FOR ANY REPAIRS TO DAMAGE CAUSED DURING CONSTRUCTION.

DIAL BEFORE
YOU DIG
www.1100.com.au

DESIGN

DRAWN

CHECK'D

CJG

CJG

MJP

REV DESCRIPTION

allen price & scarratts pty Itd COVER SHEET AND INDEX PLAN

OVER CULBURRA ROAD AT CULBURRA BEACH FOR SEALARK PTY LTD 0 50 100 150 200 SCALE:- 1:4000

STANDARDS SCHEME
Liability limited by a scheme
approved under Professiona
Standards Legislation

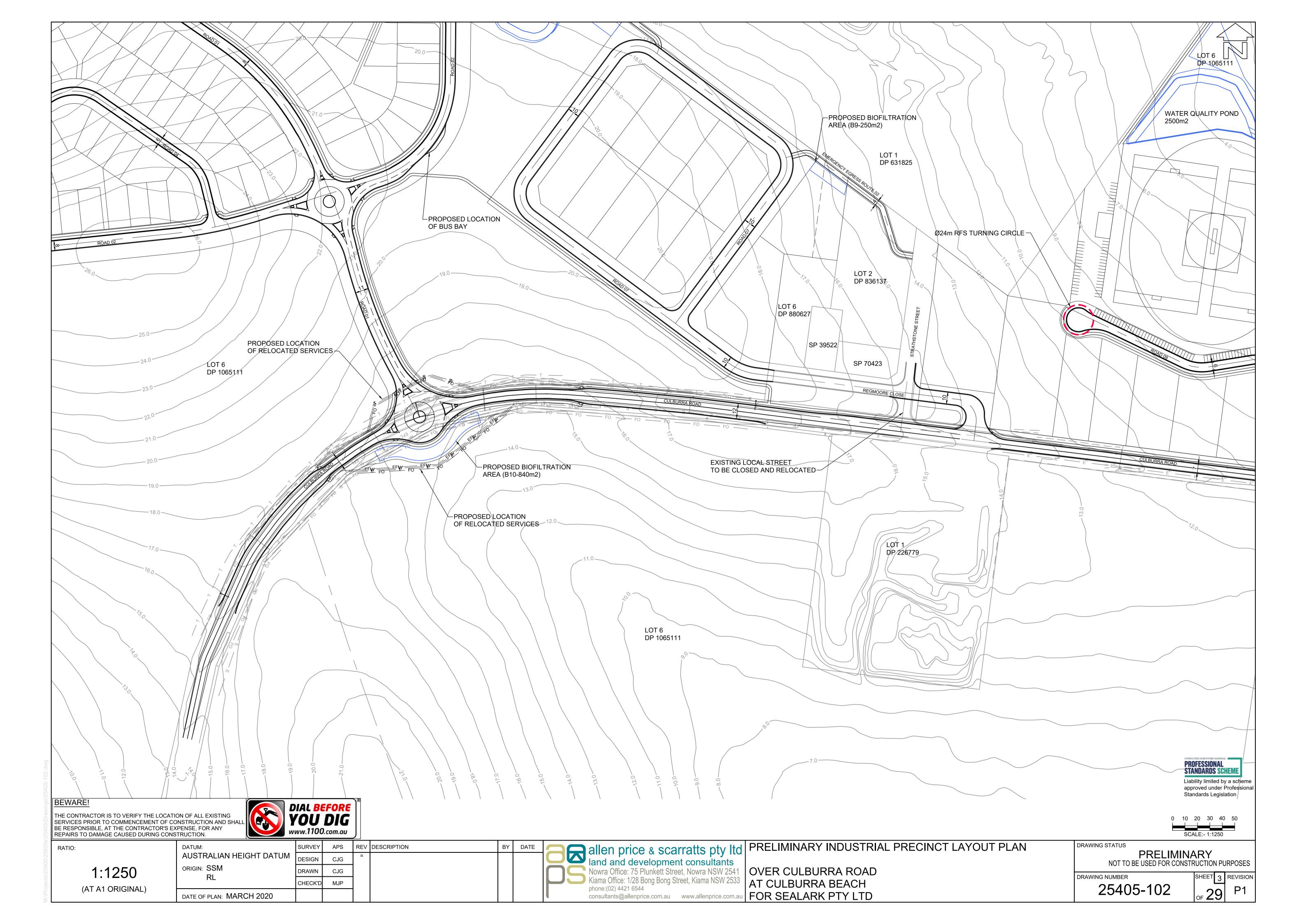
RATIC

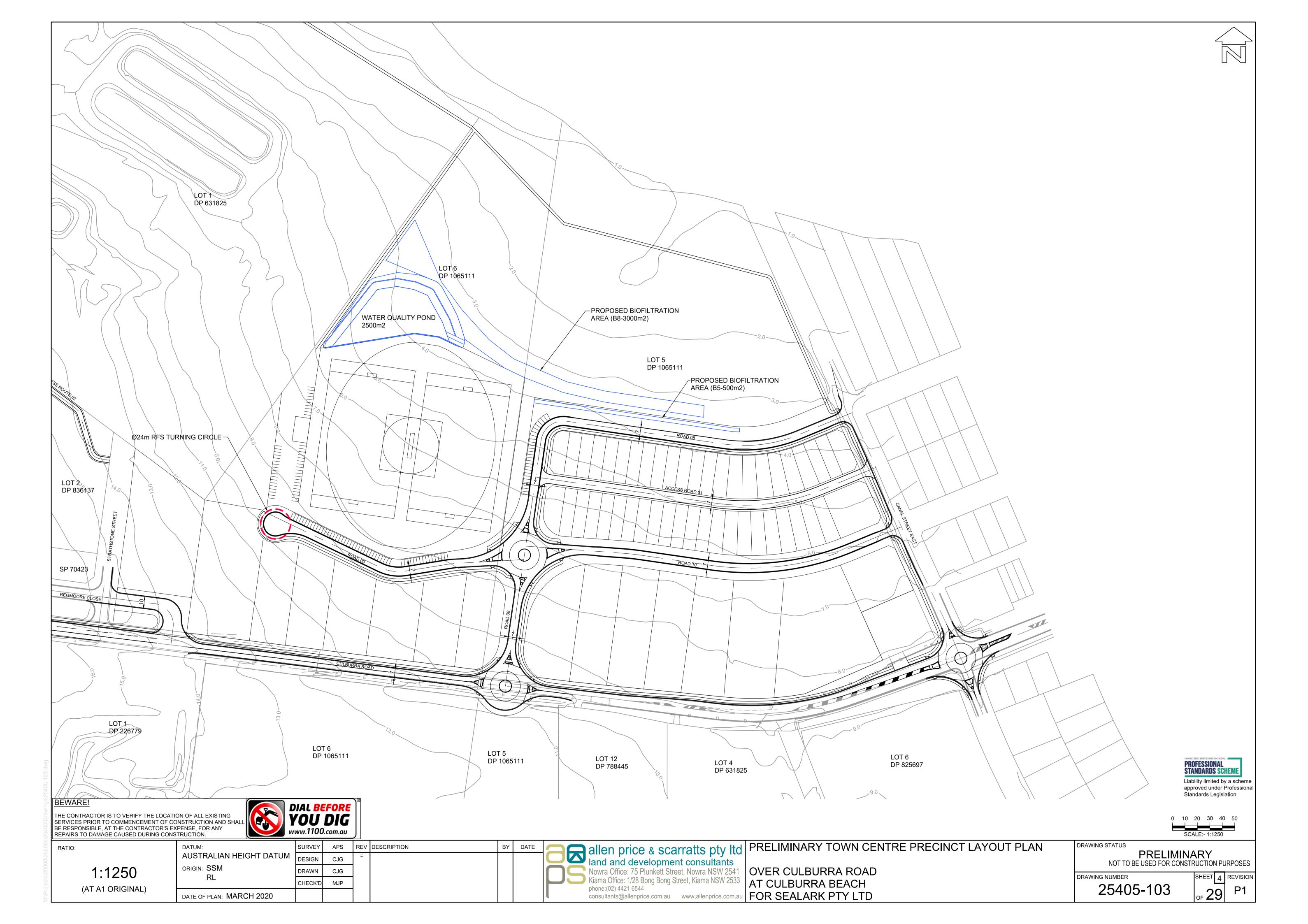
1:4000 (AT A1 ORIGINAL) DATUM:
AUSTRALIAN HEIGHT DATUM
ORIGIN: SSM
RL

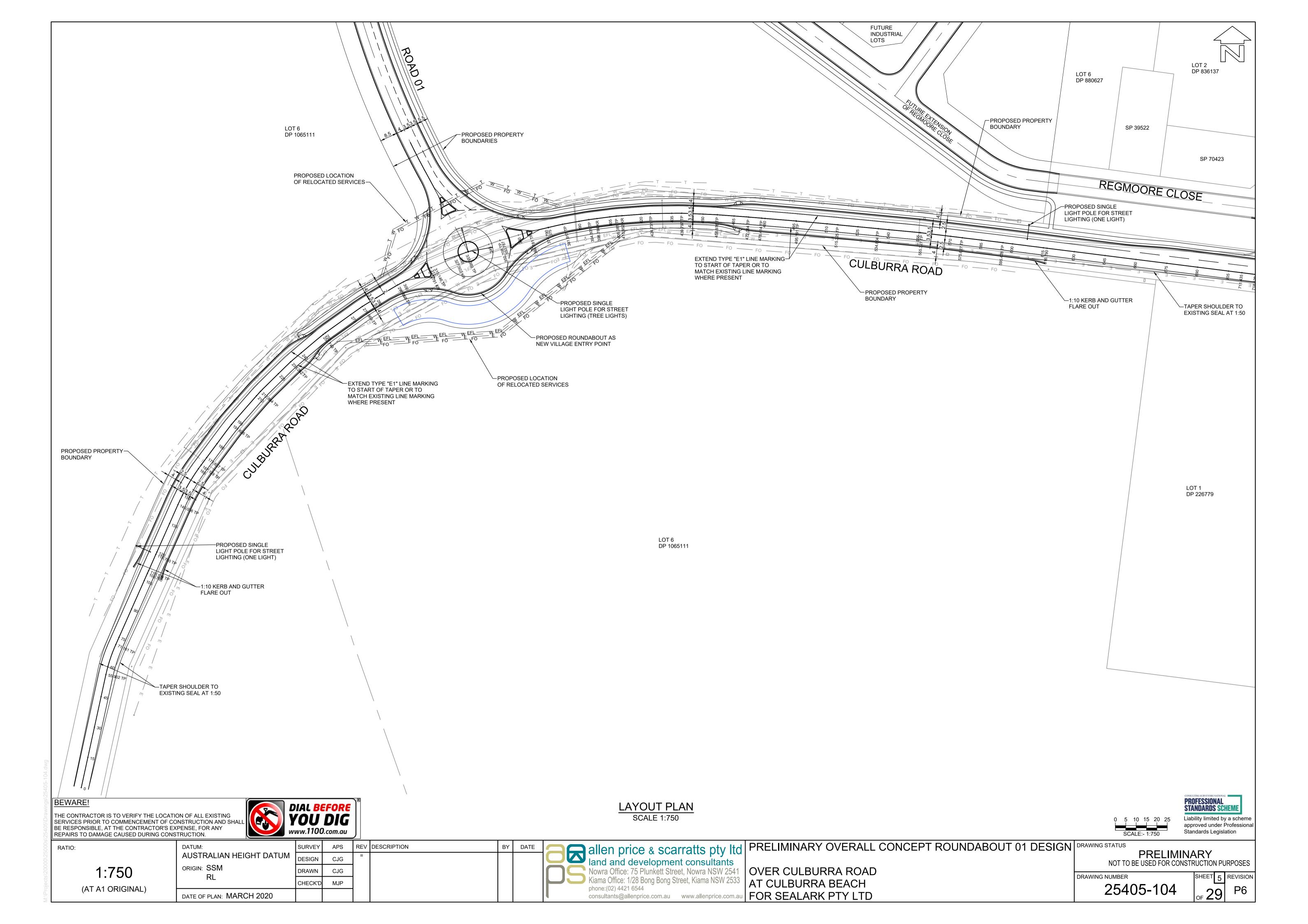
DATE OF PLAN: MARCH 2020

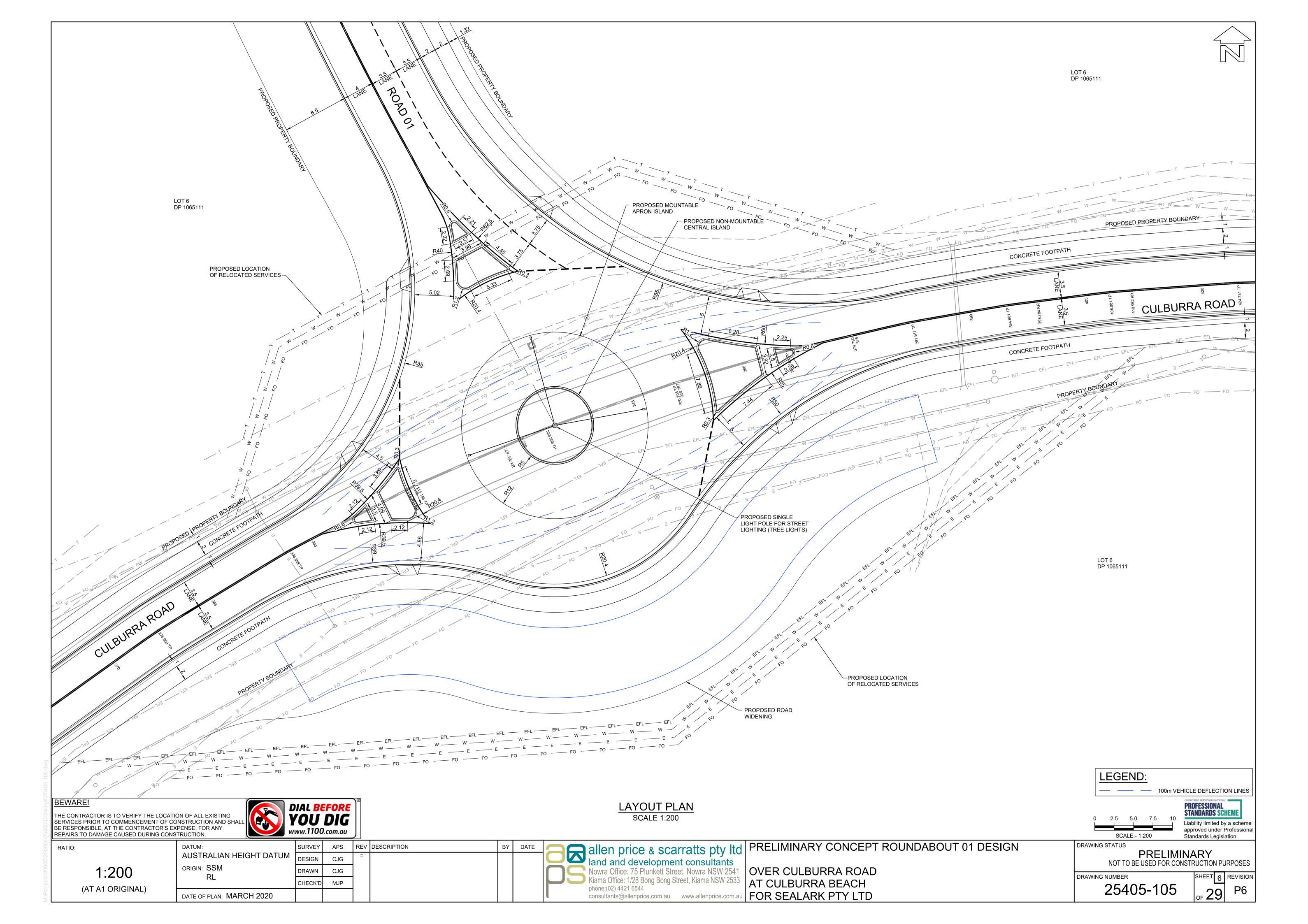
allen price & scarratts pty ltc land and development consultants Nowra Office: 75 Plunkett Street, Nowra NSW 2541 Kiama Office: 1/28 Bong Bong Street, Kiama NSW 2533 phone:(02) 4421 6544 SCALE:- 1:4000


DRAWING STATUS


PREL


NOT TO BE USED FOR


TUS
PRELIMINARY
OT TO BE USED FOR CONSTRUCTION PURPOSE


25405-100 SHEET 1 RE

